Evaluation of the cathodic protection system to fuel storage tanks

Authors

  • Carlos Medina Escuela Superior Politécnica de Chimborazo, School of Chemical Engineering, Riobamba, Ecuador
  • Fernando Marcial Clean Products Terminal, Riobamba (Ecuador)
  • Andrés Beltrán Escuela Superior Politécnica de Chimborazo, School of Chemical Engineering, Riobamba, Ecuador
  • Marco Bravo Escuela Superior Politécnica de Chimborazo, School of Chemical Engineering , Riobamba, Ecuador
  • Daniel Chuquín Escuela Superior Politécnica de Chimborazo, School of Chemical Engineering, Riobamba, Ecuador

DOI:

https://doi.org/10.47187/perf.v2i22.66

Keywords:

Cathodic protection, Corrosion, Electrochemical potential, Resistivity, Polarization

Abstract

The present research has evaluated the cathodic protection system applied to fuel storage tanks base at the Terminal de productos limpios of EP PETROECUADOR public company located in Riobamba. It was evaluated during January and May, 2018. Therefore, it studied the effectiveness of the CPS by printed current which calculates the electrochemical potential and the ohmic drop (IR) by the interruption current technique (ICT). The tanks thickness was rated by ultrasound. In order to know the humidity, plasticity index and corrosivity of the soil we did a physical-chemical analysis. It was founded that the soil where the tanks are supported on (reinforced concrete slabs) has a resistivity of 10 916.15 and 14 363.36 Ω / cm, which shows a low corrosivity. We concluded that the CPS is effective since it has a low corrosion rate of 0.152 mm per year. The ICT found that 53% of the base of steel coated and cathodically protected tanks fulfill the criteria of cathodic pro- tection of steel polarization (+100 mV) that is established in the NACE Prescription Standard SP 0169-2013.

Downloads

Download data is not yet available.

References

Adames Montero Y, Casas Vázquez M, Harriett J, Rizo Alvarez I. Soluciones alternativas para la protección interior de tanques. Rev CENIC Ciencias Químicas. 2010;41:1–11.

Sowards JW, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corros Sci. 2014;87:460–71.

Armendáriz-Puente L-MA-PM-H, Orozco-Ramos J-M. Efecto de microorganismos en la corrosión de acero SAE 1080. Perfiles. 2017;1(17):25–31.

Melgarejo CA. Study of the Corrosion Rate of an AISI-SAE 1020 Steel in a System Brine-oil-CO2-H2S by Using a Rotating Cylinder Electrode (ECR) and a Loop. Sci Tech. 2007;Año XIII:151–6.

Baboian R, Scully JR, Dean SWJ. Corrosion Tests and Standards. Corrosion Tests and Standards: Application and Interpretation. 2005.

ASTM. Standard Guide for Calculating and Reporting Measures of Precision Using Data from Interlaboratory Wear or Erosion Tests. Astm. 2015.

Wang K, Varela FB, Tan MY. The effect of electrode surface area on corrosion initiation monitoring of X65 steel in soil. Corros Sci [Internet]. 2019;152(February):218–25. Available from: https://doi.org/10.1016/j.corsci.2019.03.019

Bu Y, Chen Z, Ao J, Hou J, Sun M. Study of the photoelectrochemical cathodic protection mechanism for steel based on the SrTiO3-TiO2 composite. J Alloys Compd. 2018;731:1214–24.

Lei J, Shao Q, Wang X, Wei Q, Yang L, Li H, et al. ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light. Mater Res Bull [Internet]. 2017;95:253–60. Available from: http://dx.doi.org/10.1016/j.materresbull.2017.07.048

Samboni N, Carvajal E, Escobar JC. Revisión de parámetros fisicoquímicos como indicadores de calidad y contaminación del agua. Ing e Investig. 2007;27(3):172–81.

Torres Hérnandez JR, Del Angel Meraz EA. Evaluación de un sistema de protección catódica de un gasoducto enterrado. Rev Latinoam Metal y Mater. 2017;37(1):19–26.

Law DW, Nicholls P, Christodoulou C. Residual protection of steel following suspension of Impressed Current Cathodic Protection system on a wharf structure. Constr Build Mater [Internet]. 2019;210:48–55. Available from: https://doi.org/10.1016/j.conbuildmat.2019.03.135

Bahadori A. Monitoring Cathodic Protection Systems. Cathodic Corrosion Protection Systems. 2014. p. 203–51.

Dobruchowska E, Gilewicz A, Warcholinski B, Libralesso L, Batory D, Szparaga L, et al. Al-Mn based coatings deposited by cathodic arc evaporation for corrosion protection of AISI 4140 alloy steel. Surf Coatings Technol [Internet]. 2019;362(November 2018):345–54. Available from: https://doi.org/10.1016/j.surfcoat.2019.02.014

Koefoed O. The direct interpretation of resistivity observations made with a wenner electrode configuration. Geophys Prospect. 1966.

Li Q, Zeng D, An M. Elevating the photo-generated cathodic protection of corrosion product layers on electrogalvanized steel through nano-electrodeposition. Chem Phys Lett [Internet]. 2019;722(November 2018):1–5. Available from: https://doi.org/10.1016/j.cplett.2019.02.030

Method ST. Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. Current. 2001.

Meas Y. Técnicas electroquímicas para la medición de la velocidad de corrosión. [Internet]. 2003. Disponible en: http://depa.pquim.unam.mx

Criado M, Fajardo S, Valdez B, Bastidas JM. Aspectos cinéticos de la corrosión y fenómenos de pasividad. In: Corrosión y preservación de la infraestructura industrial. 2013.

NACE Standard TM. Measurement Techniques Related to Criteria for Cathodic Protection of Underground Storage Tank Systems. 2012. p. 1–29.

Haigh S. Consistency of the casagrande liquid limit test. Geotech Test J. 2016.

Published

2019-07-31

How to Cite

Medina, C., Marcial, F., Beltrán, A., Bravo, M., & Chuquín, D. (2019). Evaluation of the cathodic protection system to fuel storage tanks. Perfiles, 2(22), 71-77. https://doi.org/10.47187/perf.v2i22.66