Metabolome analysis in the microbial antagonism by liquid chromatography coupled with chemometrics algorithms

Authors

  • B. Chalén-Alvarado Escuela Superior Politécnica del Litoral, ESPOL, (Centro Nacional de Acuicultura e Investigaciones Marinas - CENAIM), Guayaquil, Ecuador
  • C. Quiroz-Moreno Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
  • NGS. Mogollón Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
  • C. Domínguez Escuela Superior Politécnica del Litoral, ESPOL, (Centro Nacional de Acuicultura e Investigaciones Marinas - CENAIM), Guayaquil, Ecuador
  • J. Rodríguez Escuela Superior Politécnica del Litoral, ESPOL, (Centro Nacional de Acuicultura e Investigaciones Marinas - CENAIM), Guayaquil, Ecuador

DOI:

https://doi.org/10.47187/perf.v2i22.50

Keywords:

Microbial antagonism, liquid chromatography, principal component analysis, Pseudovibrio denitrificans, Vibrio harveyi

Abstract

Metabolome is a group of low molecular weight organic compounds (metabolites) produced by biological systems. Bacterial antagonism is an important evolving force, in this sense analysis of its metabolome represents a useful tool for discovering new molecules with biological activity. The objective of this research work was to implement the use of chemometric algorithms for the identification of variations in the metabolome of the microbial antagonism between Pseudovibrio denitrificans and Vibrio harveyi. Extracts from cultured bacteria and used culture media were analyzed by Ultra-high performance liquid chromatography coupled with a diode-array detector (UHPLC-DAD). Additionally, chemometric algorithms were employed, subjecting to Principal Component  Analysis (PCA) for the  obtained  chromatograms.  Three peaks were found  that express the major variability between the individual metabolome and the metabolome from the interaction of P. denitrificans and V. harveyi. In this manner, metabolomic through  UHPLC- DAD and chemometric algorithms, showed to be a useful tool to identify the peaks responsible for differences between microbial interactions.

Downloads

Download data is not yet available.

References

Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG. Microbial antagonism: a neglected avenue of natural products research. Journal of Biotechnology 70(1-3):27-32. [Archidoris pseudoargus p. 30. J Biotechnol 70. 1999;70:27–32.

Rypien KL, Ward JR, Azam F. Antagonistic interactions among coral-associated bacteria. Environ Microbiol. 2010;12(1):28–39.

You THC, Feng LZC, Kong JWF. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. BioControl. 2015;

Spadaro D, Droby S. Trends in Food Science & Technology Development of biocontrol products for postharvest diseases of fruit : The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol [Internet]. 2016;47:39–49. Available from: http://dx.doi.org/10.1016/j.tifs.2015.11.003

Palazzini J, Roncallo P, Cantoro R, Yerkovich N, Echenique V, Torres A, et al. Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Toxins (Basel). 2018;10(88).

Khabbaz SE, Zhang L, Cáceres LA, Sumarah M, Wang A, Abbasi PA. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann Appl Biol. 2015;166(3):1–16.

Raina J-B, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ. 2016;4:e2275.

Penesyan A, Tebben J, Lee M, Thomas T, Kjelleberg S, Harder T, et al. Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria. Mar Drugs. 2011 Aug;9(8):1391–402.

Murray JA. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography. J Chromatogr A [Internet]. 2012;1261:58–68. Available from: http://dx.doi.org/10.1016/j.chroma.2012.05.012

Patti G, Yanes O, Siuzdak G. Metabolomics: The apogee of the omics trilogy. Int J Pharm Pharm Sci. 2012;5(SUPPL. 2):45–8.

Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics-A review in human disease diagnosis. Anal Chim Acta. 2010;659(1–2):23–33.

Fiehn O. Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol [Internet]. 2002;48(1–2):155–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11860207

Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography-mass spectrometry based global metabolite profiling: A review. Anal Chim Acta [Internet]. 2012;711:7–16. Available from: http://dx.doi.org/10.1016/j.aca.2011.09.042

Fraga CG, Prazen BJ, Synovec RE. Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Anal Chem. 2001;73(24):5833–40.

Szymańska E. Modern data science for analytical chemical data – A comprehensive review. Anal Chim Acta. 2018;1028.

Bartel J, Krumsiek J, Theis FJ. Statistical Methods for the Analysis of High-Throughput Metabolomics Data. Comput Struct Biotechnol J [Internet]. 2013;4(5):e201301009. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2001037014600520

Wehrens R, Bloemberg TG, Eilers PHC. Fast parametric time warping of peak lists. Bioinformatics. 2015;31(18):3063–5.

Mille-Lindblom C, Fischer H, Tranvik LJ. Antagonism between bacteria and fungi: Substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos. 2006;113(2):233–42.

Published

2019-07-31

How to Cite

Chalén-Alvarado, B., Quiroz-Moreno, C., Mogollón, N., Domínguez, C., & Rodríguez, J. (2019). Metabolome analysis in the microbial antagonism by liquid chromatography coupled with chemometrics algorithms. Perfiles, 2(22), 20-25. https://doi.org/10.47187/perf.v2i22.50