Evaluation of doxorubicin bioisosteres in the stability of ligand-parp1, cdk2, and αpi3k complexes

Authors

  • Elian Guaillazaca Gonzales Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Chimborazo, Ecuador

DOI:

https://doi.org/10.47187/perf.v1i33.312

Keywords:

PARP1, αPI3K, CDK2, Molecular Docking, Bioisosteres, Design of new drugs

Abstract

This study focused on the evaluation of doxorubicin bioisosteres and their impact on the stability of ligand-protein complexes, specifically PARP1, CDK2, and αPI3K. A computational approach was used to investigate these molecular docking interactions. The aim of this study is to understand how bioisosteres can offer more stable interactions with cancer-related proteins, thereby increasing treatment effectiveness. The methodology involved generating potential bioisosteres from doxorubicin to then perform molecular docking analysis between ligand complexes. Therefore, the affinity and stability of these bioisosteres were evaluated using molecular docking techniques. The results obtained showed that the bioisosteric complexes generated presented significantly more stable interactions with the proteins compared to the original doxorubicin. In particular, bioisosteres B5 and B4 showed better interaction, with binding energies of -11,62 and -8,29 kcal/mol, respectively, for the PARP1 and CDK2 proteins, suggesting that they could be promising candidates for the development of new treatments. The optimization of these compounds could significantly contribute to the development of more effective and less toxic therapies for the treatment of breast cancer.

Downloads

Download data is not yet available.

References

La Garza Salazar J, Juárez Sánchez P. El cáncer. Universidad Autónoma de Nuevo León; 2013. ISBN: 978-607-27-0215-8.

GLOBOCAN. Cancer Today - Most Common Sites [Internet]. 2024 [citado 2024 nov 11]. Disponible en: https://gco.iarc.who.int/today/en/dataviz/maps-most-common-sites?mode=cancer&key=total

Martín M, Herrero A, Echavarría I. El cáncer de mama. Arbor. 2015;191(773):a234–a234.

Del Río MAG, González JB. Fármacos antineoplásicos (I): revisión. Farm Prof. 2006;20(2):60-4.

Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(1):3-23.

Macas Victoria HM. Efectos secundarios al tratamiento de quimioterapia en pacientes diagnosticadas de cáncer de mama en el hospital José Carrasco Arteaga del 2015 al 2019 [tesis de licenciatura]. Cuenca: Universidad de Cuenca; 2022.

Fiegl M, Mlineritsch B, Hubalek M, Bartsch R, Pluschnig U, Steger GG. Doxorrubicina liposomal pegilada como agente único en el tratamiento del cáncer de mama metastásico: resultados de un ensayo observacional austriaco. BMC Cancer. 2011;11:1-9.

Pandiyan S, Li W. A comparative study of Bazedoxifene, Exemestane, Fulvestrant, Raloxifene, Tryprostatin A, and Vorinostat compounds as potential inhibitors against breast cancer through molecular docking, and molecular dynamics simulation. Chin J Anal Chem. 2023;51(10):100315.

Popelier P. New insights in atom-atom interactions for future drug design. Curr Top Med Chem. 2012;12(17):1924–34.

Mannhold R, Kubinyi H, Folkers G. Bioisosteres in medicinal chemistry. John Wiley & Sons; 2012. ISBN: 978-3-527-33015-7.

Shan J, Ji C. MolOpt: a web server for drug design using bioisosteric transformation. Curr Comput Aided Drug Des. 2020;16(4):460–6.

Di Gregorio A. Fragmented Molecular Docking to Rationally Improve the Accuracy of Blind Ligand-Receptor Binding Prediction [tesis de maestría]. Turín: Politecnico di Torino; 2020.

Tadesse S, Anshabo AT, Portman N, Lim E, Tilley W, Caldon CE, et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov Today. 2020;25(2):406–13. Disponible en: https://doi.org/10.1016/j.drudis.2019.12.001

Nunnery SE, Mayer I. Management of toxicity to isoform α-specific PI3K inhibitors. Ann Oncol. 2019;30:x21–x26.

Bank RPD. RCSB PDB: Homepage [Internet]. 2024 [citado 2024 nov 13]. Disponible en: https://www.rcsb.org/

PubChem. Doxorubicin [Internet]. 2024 [citado 2025 nov 13]. Disponible en: https://pubchem.ncbi.nlm.nih.gov/

Rayan B, Rayan A. Avogadro program for chemistry education: To what extent can molecular visualization and three-dimensional simulations enhance meaningful chemistry learning. World J Chem Educ. 2017;5(4):136–41.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:1–14.

Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Acoplamiento molecular: avances recientes y retos. TIP Rev Esp Cienc Quím Biol. 2019;21(S1):65–87.

Ravi L, K K. A Handbook on Protein-Ligand Docking Tool: AutoDock 4. Innovare J Med Sci [Internet]. 2016 Jun 1 [citado 2024 nov 13];4(3):28–33. Disponible en: https://journals.innovareacademics.in/index.php/ijms/article/view/12724

Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. 2012;28(15):2074–5.

Walters WP. Going further than Lipinski’s rule in drug design. Expert Opin Drug Discov. 2012;7(2):99–107.

Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–86. doi: 10.1021/ci200227u. Epub 2011 Oct 5. PMID: 21919503.

Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci. 2017;7(2):e1298.

Hetényi C, van der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett. 2006;580(5):1447–50.

Da Silveira NJF, de Azevedo WF, Guedes RC, Santos LM, Marcelino RC, da Silva Antunes P, et al. Bioinformatics approach on bioisosterism softwares to be used in drug discovery and development. Curr Bioinform. 2022;17(1):19–30.

Published

2025-02-10

How to Cite

Guaillazaca Gonzales, E. (2025). Evaluation of doxorubicin bioisosteres in the stability of ligand-parp1, cdk2, and αpi3k complexes. Perfiles, 1(33), 14-23. https://doi.org/10.47187/perf.v1i33.312