Co-pyrolysis of the mixture of lignocellulosic biomass and plastic waste

Authors

  • Katherine Ulpo Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador.
  • Daniel Espín Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador.
  • Paul Palmay Deptartment of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona, Spain.

DOI:

https://doi.org/10.47187/perf.v1i29.207

Keywords:

co-pyrolysis, biomass, polystyrene, polypropylene, biofuels

Abstract

The objective of the research was to evaluate the co-pyrolysis process of the mixture of lignocellulosic biomass with polystyrene and polypropylene plastic wastes to obtain biofuel and to determine its physicochemical characteristics. A batch reactor was used with a heating rate of 12 °C-min-1 at a pressure of -0.05 MPa, purged with nitrogen, connected to a cooling system; for the co-pyrolysis tests, a temperature of 400°C (T1) and another of 450°C (T2) were used with 2 mixture compositions, the first C1: 25%Biomass+75%Plastic (50% PP+50%PS) and the second C2: 25%Biomass+75% Plastic (25% PP+75%PS). From the analysis of the biofuels it was observed that they were mainly constituted by oxygenated compounds, olefins, naphthenes and nitrogen compounds. Their calorific value was 40152 kJ kg-1. Finally, it was determined that the biofuel at T2-C2 obtained a higher yield (73%) because in its composition there was a greater presence of polystyrene which, due to its polymeric structure, is more easily depolymerized by the addition of heat; however, if this temperature were exceeded, gas formation would be promoted. In addition, due to its physicochemical characteristics, the biofuel could be used as an additive for conventional fuels.

Downloads

Download data is not yet available.

References

Zamora-Hernández T, Prado-Fuentes A, Capataz-Tafur J, Barrera-Figueroa BE, Peña-Castro JM. Demostraciones prácticas de los retos y oportunidades de la producción de bioetanol de primera y segunda generación a partir de cultivos tropicales. Educ Quim [Internet]. 2014;25(2):122–7. Available from: http://dx.doi.org/10.1016/S0187-893X(14)70534-8

Wu X, Bourbigot S, Li K, Zou Y. Co-pyrolysis characteristics and flammability of polylactic acid and acrylonitrile-butadiene-styrene plastic blend using TG, temperature-dependent FTIR, Py-GC/MS and cone calorimeter analyses. Fire Saf J [Internet]. 2022;128(September 2021):103543. Available from: https://doi.org/10.1016/j.firesaf.2022.103543

Sajdak M. Impact of plastic blends on the product yield from co-pyrolysis of lignin-rich materials. J Anal Appl Pyrolysis [Internet]. 2017;124:415–25. Available from: http://dx.doi.org/10.1016/j.jaap.2017.03.002

Palmay P et al. Influence of Temperature and Reaction Time on the Performance of Thermal Pyrolysis of Compact Polystyrene Waste. IOP Conf Ser Earth Environ Sci [Internet]. 2021;728(1):1–8. Available from: https://www.researchgate.net/publication/351030750_Influence_of_Temperature

_and_Reaction_Time_on_the_Performance_of_Thermal_Pyrolysis_of_Compact

_Polystyrene_Waste

Ramos W, Pretell V, Lujan C. Catalytic pyrolysis of polypropylene residues for the obtaining of liquid fuels. Proc LACCEI Int Multi-conference Eng Educ

Technol. 2019;2019-July(January).

Gosgot Angeles W, Rivera López RY, Rascón J, Barrena Gurbillón MÁ, Ordinola Ramirez CM, Oliva M, et al. Valorización energética de residuos orgánicos mediante pirolisis. Rev Investig Agroproducción Sustentable [Internet]. 2021;5(2):26. Available from: https://www.researchgate.net/publication/356897897_Valorizacion_energetica_d e_residuos_organicos_mediante_pirolisis

Afanasjeva, Natalia et. al. Lignocellulosic biomass. Part I: Biomass transformation. J Sci with Technol Appl. 2017;3(2017):27–43.

Rodríguez-Machín L, López-Díaz I, Ocaña-Guevara VS, Pérez-Bermúdez RA. Termo-conversión de biomasa por pirólisis. Tendencias de investigación y desarrollo. (Spanish). Biomass thermo-conversion by pyrolysis Trends Res Dev [Internet]. 2012;39(1):27–32. Available from: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=77050346&la ng=es&site=ehost-live

Rocha MV, Renzini MS, Pierella LB. Co-pirólisis de biomasa lignocelulósica y residuos plásticos para producir biocombustibles sustentables. Ajea. 2020;(5).

Spanevello RA, Suárez AG, Sarotti AM. Alternative sources of starting materials. Educ Quim [Internet]. 2013;24(SPL.ISSUE1):124–31. Available from: http://dx.doi.org/10.1016/S0187-893X(13)72505-9

Mancheno M, Astudillo S, Arévalo P, Malo I, Naranjo T, Espinoza J. Aprovechamiento energético de residuos plásticos obteniendo combustibles líquidos, por medio del proceso de pirólisis. La Granja. 2016;23(1):53–9.

Zulia U, Urdaneta G, Joheni A, Zulia U. Manejo de residuos sólidos en América Latina y el Caribe. Choice Rev Online. 2006;44(03):44-1347-44–1347.

Schwarz AE, Ligthart TN, Godoi Bizarro D, De Wild P, Vreugdenhil B, van Harmelen T. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag [Internet]. 2021;121:331–42. Available from: https://doi.org/10.1016/j.wasman.2020.12.020

Baray-Guerrero M del R, Porras-Flores DA, Hoffmann-Esteves HE, Manjarrez-

Dominguez CB. Tratamiento de la biomasa lignocelulósica mediante la pirolisis lenta y a baja temperatura para la producción de biocombustibles. Rev Energías Renov. 2019;3(9):1–9.

Medina MP, Sánchez A, Hernández JF. Pirólisis de bagazo de caña a escala de laboratorio. Tecnol Química [Internet]. 2008;XXVIII(2):61–70. Available from: https://www.redalyc.org/articulo.oa?id=445543756008

Wang Z, Burra KG, Lei T, Gupta AK. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Prog Energy Combust Sci [Internet]. 2021;84:51. Available from: https://doi.org/10.1016/j.pecs.2020.100899

Chen L, Yang K, Huang J, Liu P, Yang J, Pan Y, et al. Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry. Appl Energy Combust Sci [Internet]. 2022;9(November 2021):100057. Available from: https://doi.org/10.1016/j.jaecs.2022.100057

Uzoejinwa BB, He X, Wang S, El-Fatah Abomohra A, Hu Y, Wang Q. Co- pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers Manag [Internet]. 2018;163(December 2017):468–92. Available from: https://doi.org/10.1016/j.enconman.2018.02.004

Gómez JM. Analysis of the variation in the efficiency in the production of biofuels in Latin America. Estud Gerenciales [Internet]. 2016;32(139):120–6. Available from: http://dx.doi.org/10.1016/j.estger.2016.01.001

Wang H, Peng X, Zhang H, Yang S, Li H. Microorganisms-promoted biodiesel production from biomass: A review. Energy Convers Manag X. 2021;12.

Bonelli, P.R et al. Caracterización cinética de la pirólisis y copirólisis de combustibles alternativos P.R. Av en Energías Renov y Medio Ambient. 2019;1:105–12.

Campos-Sofia M, León-Cañet M, Silveira-Font Y, Moro Martínez A, Falcón- Hernández J. Tratamiento magnético sobre parámetros físicos-químicos de

muestras de petróleo. Tecnol Química [Internet]. 2015;35(3):271–81. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 61852015000300002&lang=pt%0Ahttp://scielo.sld.cu/pdf/rtq/v35n3/rtq02315.pd f

García A. Parámetros para determinar las normas de almacenamiento y consumo del combustible diesel. Rev Av científica [Internet]. 2009;12(1):1–6. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=5074414

Castillo-Hernández P, Mendoza-Domínguez A, Caballero-Mata P. Análisis de las propiedades fisicoquímicas de gasolina y diesel mexicanos reformulados con Etanol Analysis of Physicochemical Properties of Mexican Gasoline and Diesel Reformulated with Ethanol. Ing Investig y Tecnol. 2012;13(número 3):293–306.

Arteaga J et al. Obtención de biocombustibles producto de la pirólisis rápida de residuos de Palma Africana ( Elaeis guineensis Jacq .). Biotecnol en el Sect Agropecu y Agroindustrial [Internet]. 2012;10(2):144–51. Available from: http://www.scielo.org.co/scielo.php?pid=S1692- 35612012000200017&script=sci_abstract&tlng=es

Singh RK et al. Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel. 2020;262(October):1– 10.

Published

2023-04-07

How to Cite

Ulpo, K., Espín, D., & Palmay, P. (2023). Co-pyrolysis of the mixture of lignocellulosic biomass and plastic waste. Perfiles, 1(29), 69-77. https://doi.org/10.47187/perf.v1i29.207