Theoretical Evaluation on Inelastic Lepton Scattering of Nuclear Effects

Authors

  • Emmanuel Likta University of Maiduguri, Department of Physics, Maiduguri, Borno State, Nigeria.
  • Yakubu Ngadda University of Maiduguri, Department of Physics, Maiduguri, Borno State, Nigeria.
  • Nura Yakubu University of Maiduguri, Department of Physics, Maiduguri, Borno State, Nigeria.

DOI:

https://doi.org/10.47187/perf.v1i29.203

Keywords:

Quark Valance, Infinite Nuclear, Quantum Chromodynamic, Structure function and Lepton

Abstract

Inelastic scattering is a process in which the kinetic energy of an incident particle is not conserved due to the interaction between an electron and a photon causing an unstable nuclear state. Upon the interaction of the incident photon with matter, Raman scattering occurs where the frequency of the photon shifts towards red or blue. Electron scattering of a profoundly inelastic nature emanating from protons provides the primary evidence for the presence of quarks, neutrons undergo inelastic scattering that excites the nucleus and causes it to emit corpuscular and electromagnetic particles. The aim of this work was to theoretically obtain the nuclear effect on the scattering of inelastic leptons and to observe the nuclear dependence. The methods, cross-section four-momentum transfer squared function and the Lorentz scalar product, were used. The correlation between low energy parameters and quark valence was obtained, the indicative value in quantum chromodynamics is 5% and infinite nuclear material does not lead to any finite size report. The origin of the nuclear effects is not yet evident; however, the structural functions and the effects of finite size were theoretically tested.

Downloads

Download data is not yet available.

References

Borgschulte A, Jain A, Ramirez-Cuesta AJ, Martelli P, Remhof A, Friedrichs O, et al. Mobility and dynamics in the complex hydrides LiAlH4 and LiBH4. Faraday Discuss [Internet]. 2011 [citado el 1 de marzo de 2023];151:213–30; discussion 285-95. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22455070/.

Walker J, Resnick R. Halliday and Resnick fundamentals of physics. 2018.

Crandall R, Whitnell R, Bettega R. Exactly soluble two‐electron atomic model. Am J Phys [Internet]. 1984;52(5):438–42. Disponible en: http://dx.doi.org/10.1119/1.13650.

Rankin DWH, Mitzel N, Morrison C. Structural methods in molecular inorganic chemistry. Hoboken, NJ: Wiley-Blackwell; 2013.

Ichimiya A, Cohen PI. Reflection high-energy electron diffraction. Cambridge, England: Cambridge University Press; 2011.

Yates JT Jr. Surface Science: An Introduction Surface Science: An Introduction , K. Oura , V. G. Lifshits , A. A. Saranin , A. V. Zotov , and M. Katayama Springer-Verlag, New York, 2003. $89.95 (440 pp.). ISBN 3-540-00545-5. Phys Today [Internet]. 2004;57(10):79–80. Disponible en: http://dx.doi.org/10.1063/1.1825276.

Chenciner A, Montgomery R. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann Math [Internet]. 2000 [citado el 1 de marzo de 2023];152(3):881. Disponible en: https://www.emis.de/journals/Annals/152_3/chencine.pdf.

Krishnakumar V, Keresztury G, Sundius T, Ramasamy R. Simulation of IR and Raman spectra based on scaled DFT force fields: a case study of 2-(methylthio)benzonitrile, with emphasis on band assignment. J Mol Struct [Internet]. 2004;702(1–3):9–21. Disponible en: https://www.sciencedirect.com/science/article/pii/S0022286004004272.

Kuhn KF, Koupelis T. In quest of the universe. 4a ed. Sudbury, MA: Jones and Bartlett; 2004

Maulik D, editor. Doppler ultrasound in obstetrics and gynecology. Berlin/Heidelberg: Springer-Verlag; 2005.

Moore C. Braids in classical dynamics. Phys Rev Lett [Internet]. 1993;70(24):3675–9. Disponible en: http://dx.doi.org/10.1103/PhysRevLett.70.3675.

Terreni J, Sambalova O, Borgschulte A, Rudić S, Parker SF, Ramirez-Cuesta AJ. Volatile hydrogen intermediates of CO2 methanation by inelastic neutron scattering. Catalysts [Internet]. 2020 [citado el 1 de marzo de 2023];10(4):433. Disponible en: https://www.mdpi.com/2073-4344/10/4/433.

Bagla JS. Cosmological N-Body simulation: Techniques, Scope and Status. arXiv [astro-ph] [Internet]. 2004 [citado el 1 de marzo de 2023]; Disponible en: http://arxiv.org/abs/astro-ph/0411043.

Thomas AW, Weise W. The structure of the nucleon. Weinheim, Germany: Wiley-VCH Verlag; 2001.

Zyla, P.a., et al. (Particle Data Group) (2020) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 083C01. - references - scientific research publishing [Internet]. Scirp.org. [citado el 1 de marzo de 2023]. Disponible en: https://www.scirp.org/%28S%28vtj3fa45qm1ean45vvffcz55%29%29/reference/referencespapers.aspx?referenceid=2832331.

Fellhauer M, Lin DNC, Bolte M, Aarseth SJ, Williams KA. The white dwarf deficit in open clusters: Dynamical processes. Astrophys J [Internet]. 2003;595(1):L53–6. Disponible en: http://dx.doi.org/10.1086/379005.

Burns PA. The measurement of alpha, beta and gamma radiations. 1982.

Nachtmann O. Elementary particle physics: Concepts and phenomena [Internet]. 1990a ed. Berlin, Germany: Springer; 1989. Disponible en: https://books.google.at/books?id=Co3_CAAAQBAJ.

Amaudruz P. A re-evaluation of the nuclear structure function ratios for D, He, Li, C and Ca. arXiv [hep-ph] [Internet]. 1995 [citado el 1 de marzo de 2023]; Disponible en: http://arxiv.org/abs/hep-ph/9503291.

Edelmann J, Piller G, Weise W. Polarized deuteron structure functions at small x. arXiv [nucl-th] [Internet]. 1997 [citado el 1 de marzo de 2023]; Disponible en: http://arxiv.org/abs/nucl-th/9701026.

Stanford AL, Tanner JM. Physics for students of science and engineering. 1a ed. San Diego, CA: Academic Press; 2014.

Smirnov GI. On the universality of the x and A dependence of the EMC effect and its relation to parton distributions in nuclei. arXiv [hep-ph] [Internet]. 1995 [citado el 1 de marzo de 2023]; Disponible en: http://arxiv.org/abs/hep-ph/9512204.

Smirnov GI. Investigation of the A dependence in the deep inelastic scattering of leptons and its implications for the interpretation of the EMC effect. Phys At Nucl [Internet]. 1995 [citado el 1 de marzo de 2023];58(9):1613–8. Disponible en: https://inis.iaea.org/search/search.aspx?orig_q=RN:27038248.

Barret R.C. and D. f. jackson, “Nuclear Sizes and Structure,” Oxford University Press, Oxford, 1977. - references - scientific research publishing [Internet]. Scirp.org. [citado el 1 de marzo de 2023]. Disponible en: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=632486.

Goity Jaffe, Leutwyler H. On the mean free path of pions in hot matter. Phys Lett B [Internet]. 1989;228(4):517–22. Disponible en: https://www.sciencedirect.com/science/article/pii/0370269389909854

Downloads

Published

2023-03-31

How to Cite

Likta, E., Ngadda, Y., & Yakubu, N. (2023). Theoretical Evaluation on Inelastic Lepton Scattering of Nuclear Effects. Perfiles, 1(29), 40-45. https://doi.org/10.47187/perf.v1i29.203