Polynomial parametric and non-parametric B-Splines regression models. An Engineering Application.
DOI:
https://doi.org/10.47187/perf.v1i28.185Keywords:
Vehicle crash simulation, polynomial regression models, B-Splines regression models, goodness of fit, confidence interval, normalityAbstract
A study of the polynomial parametric and nonparametric B-splines regression models applied to a simulation of an impact of a car against a bus body was performed. A non-experimental design, cross-sectional, and correlational was established. The R software was used and the following criteria were considered: the rejection of the nullity of the coefficients of the models through the Student's t-hypothesis test, the validity of the models using the Snedecor F-test of the ANOVA table, the goodness of fit, 95% confidence intervals, and compliance with the assumptions of normal distribution, non-autocorrelation and homoscedasticity of the residuals. The Wilcoxon nonparametric test was applied to select the appropriate regression model based on the lengths of the confidence intervals. The parametric polynomial regression models were fitted to curves with parabolic shape or curvature without abrupt changes, fitting better to the relationships of the vehicle impact simulation, whose explanatory variable is the speed of the impacting vehicle. While the nonparametric B-splines regression models provided a better fit to bell-shaped curves with more abrupt curvature changes.
Downloads
References
Jurewicz C, Sobhani A, Woolley J, Dutschke J, Corben B. Exploration of Vehicle Impact Speed – Injury Severity Relationships for Application in Safer Road Design. Transportation Research Procedia. 2016;14:4247-56.
Moreno-Zulca PA, Llanes-Cedeño EA, Guaña-Fernández WV, Jima-Matailo JC. Análisis estructural de un bus por el método de elementos finitos. Polo del Conocimiento. 2020;5(1):799-837.
Portillo M, Chacón R, Moreno M, Bongiorno F. Simulación y análisis de una prueba de choque de un automóvil tipo deportivo, utilizando un software basado en el método de los elementos finitos. Revista Ciencia e Ingeniería. 2011;32(1):69-77.
Cárdenas D, Escudero J, Quizhpi S, Amaya M. Propuesta de diseño estructural para buses de carrocería interprovincial. Ingenius Revista de Ciencia y Tecnología. 2014;11(1):42-52.
Pikûnas A, Pumputis V, Sadauskas V. The influnce of vehicles speed on accident rates and their consequences. Transport. 2004;19(1):15-25.
Stimson JA, Carmines EG, Zeller RA. Interpreting Polynomial Regression. Sociological Methods & Research. mayo de 1978;6(4):515-24.
Meilán-Vila A, Opsomer J, Francisco-Fernández M, Crujeiras R. A goodness-of-fit test for regression models with spatially correlated errors. TEST. 2020;29(3):728-49.
Ostertagová E. Modelling using Polynomial Regression. Procedia Engineering. 2012;48:500-6.
Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3.a ed. New York, USA: John Wiley & Sons, Inc.; 2003. 976 p.
Aparicio J, Martínez M, Morales J. Modelos lineales aplicados en R [Internet]. 1.a ed. Elche, España; 2006 [citado 29 de abril de 2021]. 215 p. Disponible en: https://umh3067.edu.umh.es/wp-content/uploads/sites/240/2013/02/Modelos-Lineales-Aplicados-en-R.pdf
Racine JS. The crs Package [Internet]. 2021 [citado 3 de abril de 2021]. Disponible en: https://cran.r-project.org/web/packages/crs/vignettes/crs.pdf
Paluszny M, Prautzsch H, Böhm W. Métodos de Bézier y B-splines. Karlsruhe: Univ.-Verl; 2005. 303 p.
Racine JS. A primer on Regression Splines. 2019.
Yli-Heikkilä M. Data Science Languages. 2019;2.
Garibaldi LA, Oddi FJ, Aristimuño FJ, Behnisch AN. Modelos estadísticos en lenguaje R [Internet]. 1.a ed. Buenos Aires, Argentina: UNRN; 2019. 261 p. Disponible en: https://rid.unrn.edu.ar/bitstream/20.500.12049/5789/2/garibaldi_lenguajeR_eunrn.pdf
Woolson RF. Wilcoxon signed-Rank test. En: Wiley encyclopedia of clinical trials [Internet]. Willey; 2007. p. 1-3. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780471462422.eoct979
Meyer R. Deviance Information Criterion (DIC). En: Wiley StatsRef: Statistics Reference Online [Internet]. 1.a ed. Wiley; 2016 [citado 7 de mayo de 2022]. p. 1-6. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat07878
Cavanaugh JE, Neath AA. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comp Stat. 2019;11(3):1-11.
Koenker R. A note on studentizing a test for heteroscedasticity. Journal of Econometrics. 1981;17(1):107-12.
Tillman JA. The Power of the Durbin-Watson Test. Econometrica. 1975;43(5/6):959-74.
Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81(12):2141-55.
Pedrosa I, Juarros-Basterretxea J, Robles-Fernández A, Basteiro J, García-Cueto E. Pruebas de bondad de ajuste en distribuciones simétricas, ¿qué estadístico utilizar? Univ Psychol. 2014;14(1):245-54.
Saculinggan M, Balase EA. Empirical Power Comparison of Goodness of Fit Tests for Normality in the Presence of Outliers. J Phys: Conf Ser. 2013;435:1-11.
Peˇckov A. A machine learning approch to polynomial regression [Internet] [Tesis Doctoral]. [Ljubljana, Slovenia]: Joˇzef Stefan International Postgraduate School; 2012. Disponible en: http://kt.ijs.si/theses/phd_aleksandar_peckov.pdf
Rencher AC, Schaalje GB. Linear models in Statistics. 2nd ed. Hoboken, N.J: Wiley-Interscience; 2008. 672 p.
Kaňka M. Segmented Regression Based on B-Splines with Solved Examples. 2015;20.
Mastandrea M, Vangi D. Influence of braking force in low-speed vehicle collisions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2005;219(2):151-64.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.