Lignocellulose Biocatalysis Concepts from a Process and Systems Engineering Approach: a review.

Authors

  • Gabriela Arianna Suárez Matallana Universidad de Ingenieria y Tecnologia, Departamento de Ingeniería Química, Lima, Perú.
  • Sara Rosa Sánchez Atahualpa Universidad de Ingenieria y Tecnologia, Departamento de Ingeniería Química, Lima, Perú.
  • Arnold Lazaro Riquez Universidad de Ingenieria y Tecnologia, Departamento de Ingeniería Química, Lima, Perú.
  • Ursula Fabiola Rodríguez Zúñiga Universidad de Ingenieria y Tecnologia, Departamento de Ingeniería Química, Lima, Perú.

DOI:

https://doi.org/10.47187/perf.v1i28.179

Keywords:

Biorefinery, Lignocellulosic biomass, cellulases enzymes, Biocatalysis, Process and Systems Engineering (PSE)

Abstract

Lignocellulosic biomass is recognized as a renewable and abundant raw material on the planet in processing platforms to produce biofuels and/or high value-added biomolecules. This type of integrated production process is called "biorefinery" and is intensively studied because its implementation is still hampered by factors such as energy consumption in the pretreatment stages, the lack of a deep understanding of the synergy of cellulase enzymes, and the difficulty of standardization of conversion processes given the variability of feedstocks and scales of application. Thus, this work proposes a global review of the aforementioned topics associated with the fundamentals of lignocellulose composition and characteristics, as well as examples of important derived molecules for their commercial value. From this perspective, a collection of knowledge necessary for the understanding of biomass processing platforms and the valorization of derived biomolecules is proposed using Process and Systems Engineering tools that allow the identification of sustainable, cost-effective and flexible bio-based technological routes.

Downloads

Download data is not yet available.

References

Ullah K, Kumar Sharma V, Dhingra S, Braccio G, Ahmad M, Sofia S. Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renew Sustain Energy Rev [Internet]. 2015 [citado 3 noviembre 2021]; 51: 682–698. Disponible en: https://doi.org/10.1016/j.rser.2015.06.044

Mansoornejad B, Sanaei S, Gilani B, Batsy DR, Benali M, Stuart PR. Designing Integrated Biorefineries Using Process Systems Engineering Tools. En: Rabaçal M, Ferreira AF, Silva CAM, Costa M, editores. Biorefineries: Targeting Energy, High Value Products and Waste Valorisation [Internet]. Cham: Springer International Publishing; 2017 [citado 3 noviembre 2021]. p. 201-26. Disponible en: https://doi.org/10.1007/978-3-319-48288-0_8

Singhania RR, Adsul M, Pandey A, Patel AK. Cellulases. En: Pandey A, Negi S, Soccol CR, editores. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier; 2017. p. 37-101.

Singh J, Kundu D, Das M, Banerjee R. Chapter 24 - Enzymatic Processing of Juice From Fruits/Vegetables: An Emerging Trend and Cutting Edge Research in Food Biotechnology. En: Kuddus M, editor. Enzymes in Food Biotechnology [Internet]. Academic Press; 2019 [citado 5 noviembre 2021]. p. 419-432. Disponible en: https://doi.org/10.1016/B978-0-12-813280-7.00024-4

Singhania RR, Saini JK, Saini R, Adsul M, Mathur A, Gupta R, et al. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour. Technol. 2014; 169: 490–495.

Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J [Internet]. 2019 [citado 3 noviembre 2021]; 6(2): 962-979. Disponible en: https://dx.doi.org/10.18331/BRJ2019.6.2.3

Nagler A, Gerace S. First and second-generation biofuels: What’s the difference. Laramie, WY: University of Wyoming Extension; 2020.

Fengel D, Weneger G. Wood: Chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1984.

Chávez-Sifontes M. La biomasa: fuente alternativa de combustibles y compuestos químicos. An. Quím. 2019, 115 (5): 399-407.

Brigham C. Chapter 3.22 - Biopolymers: Biodegradable Alternatives to Traditional Plastics. En: Török B, Dransfield T, editores. Green Chemistry: An Inclusive Approach. Ámsterdam: Elsevier; 2018. p.753-770.

Bajpai P. Structure of Lignocellulosic Biomass. En: Pretreatment of Lignocellulosic Biomass for Biofuel Production [Internet]. Singapore: Springer Singapore; 2016 [citado 31 octubre 2021]. p. 7-12. Disponible en: https://doi.org/10.1007/978-981-10-0687-6_2

Ortiz-Toledo CO, Trujillo-Mozón CJ, Influencia de los tratamientos químicos de mercerizado, trimetoxisilanos y anhídrido maleico, sobre la estabilidad térmica de las fibras de lino [tesis final de grado]. Trujillo: Universidad Nacional de Trujillo; 2019.

Patel JP, Parsania PH. Characterization, testing, and reinforcing materials of biodegradable composites. En: Shimpi NG, editor. Biodegradable and Biocompatible Polymer Composites [Internet]. Woodhead Publishing; 2018 [citado 5 noviembre 2021]. P. 55–79. Disponible en: https://doi.org/10.1016/B978-0-08-100970-3.00003-1

Cortes-Ortiz WG. Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. J. Technol. 2014; 13(1): 39-44.

Carpenter D, Westover TL, Czernik S, Jablonski W. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem [Internet]. 2014 [citado 3 noviembre 2021]; 16(2): 384–406. Disponible en: https://doi.org/10.1039/C3GC41631C

Quesada-González, O, Torres-García E, Alfonso-Martínez FE. Estudio de la degradación térmica del residuo de la naranja. Rev. cuba. quím [Internet]. 2011 [citado 3 noviembre 2021]; XXIII(1): 25-33. Disponible en: https://www.redalyc.org/articulo.oa?id=443543722004

Avgerinos GC, Wang DIC. Selective delignification for fermentation of enhancement. Biotechnol Bioeng. 1983; 25(1): 67–83.

Carvalho DM, Colodette JL. Comparative study of acid hydrolysis of lignin and polysaccharides in biomasses. BioRes. 2017; 12(4): 6907-6923.

Dence CW. The Determination of Lignin. En: Lin SY, Dence CW, editores. Methods in Lignin Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg; 1992. p. 33-61.

Wang W, Niu M, Hou Y, Wu W, Liu Z, Liu Q, et al. Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen. Green Chem [Internet]. 2014 [citado 3 noviembre 2021]; 16(5): 2614-2618. Disponible en: https://doi.org/10.1016/j.procbio.2019.10.001

Haldar D, Kumar M. Lignocellulosic conversion into value-added products: A review. Process Biochem [Internet]. 2019 [citado 3 noviembre 2021]; 89:110-133. Disponible en: https://doi.org/10.1016/j.procbio.2019.10.001

Saka S, Miyafuji H, Koara Y, Kawamoto H, inventores; Saka S, asignado. Method for producing acetic acid using anaerobic microorganism and method for producing bioethanol. English Patent US8409832B2. 2013 Abr 2.

Wagner FS, Staff U. Acetic Acid. En: Kirk-Othmer, editors. Encyclopedia of Chemical Technology [Internet]. Oxford; John Wiley & Sons; 2014 [citado 23 de noviembre 2021]. Disponible en: https://doi.org/10.1002/0471238961.0103052023010714.a01

Morales de la Rosa, S. Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos, [Tesis doctoral], Madrid: Universidad Autónoma de Madrid: 2015.

Song,J, Fan H, Ma J, Han B. Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chem, [Internet], 2013, [Citado 3 noviembre 2021], 15(10), 2619. Disponible en: https://doi.org/10.1039/C3GC41141A

Marianou A, Michailof C, Ipsakis D, Triantafyllidis K, Lappas A. Cellulose conversion into lactic acid over supported HPA catalysts, Green Chem, [Internet], 2019, [Citado 3 noviembre 2021] 21(22), 6161-6178, Disponible en: https://doi.org/10.1039/C9GC02622C

Aslam NM, Masdar MS, Kamarudin SK, Daud WRW. Overview on Direct Formic Acid Fuel Cells (DFAFCs) as an Energy Sources. APCBEE Procedia, [Internet], 2012, [Citado 4 noviembre 2021], 3, 33-39, ISSN 2212-6708, Disponible en: https://doi.org/10.1016/j.apcbee.2012.06.042.

Rejal ZS, Masdar SM, Kamarudin SK. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int. J. Hydrog. Energy. [Internet], 2014, [Citado 5 noviembre 2021]; 39: 10267–10274. Disponible en: https://doi.org/10.1016/j.ijhydene.2014.04.149.

Patel, A., Shah A. Integrated lignocellulosic biorefinery: Gateway for production of second-generation ethanol and value-added products. JB&B, 2021; 6(2), 108-128.

Cerioni JL, Santori GF, Nichio NN. Producción de Xilitol a partir de la hidrogenación de xilosa en fase acuosa con catalizadores de níquel. InvJov [Internet]. 2019 [citado 3 de noviembre de 2021]; 6 (Especial):53-4. Disponible en: https://revistas.unlp.edu.ar/InvJov/article/view/6774

Yue P, Hu Y, T R, Bian J, Peng, F. Hydrothermal pretreatment for the production of oligosaccharides: A review. Bioresour. Technol. [Internet], 2021, [Citado 3 noviembre 2021]; 343: 126075. Disponible en: https://doi.org/10.1016/j.biortech.2021.126075.

Maeda M, Hosoya T, Yoshioka K, Miyafuji H, Ohno H, Yamada T. Vanillin production from native softwood lignin in the presence of tetrabutylammonium ion. J Wood Sci, [Internet]. 2018 [citado 5 noviembre 2021]; 64: 810–815, Disponible en: https://doi.org/10.1007/s10086-018-1766-0

Martínez-Vargas DX. Catalizadores complejos salen CO (ii), Fe (iii) y Cu (ii) soportados en SiO2, Al2O3 y carbón activado, con selectividad para la obtención de catecol y 2,5- diformilfurano [Tesis doctoral]. México: Universidad Autónoma de Nuevo León; 2016.

Domínguez-González A, Hernández-Soto R, Salgado-Román JM, Ardila-Arias AN, Hernández-Maldonado JA, Obtención de compuestos aromáticos por oxidación de lignina con lacasa inmovilizada en alginato. AGRO, [Internet], 2018, [Citado 5 noviembre 2021]; 52: 191-202. Disponible en: http://www.scielo.org.mx/pdf/agro/v52n2/2521-9766-agro-52-02-191-en.pdf

McCarthy AL, O’Callaghan YC, Connolly A, Piggott CO, FitzGerald RJ, O’Brien NM. Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chem [Internet]. 2012 [Citado 5 noviembre 2021]; 134(2): 641–646. Disponible en: http://dx.doi.org/10.1016/j.foodchem.2012.02.133

Pacheco MI. Obtención de ácido Ferúlico a partir de un concentrado de la hidrólisis alcalina del maíz [Tesis Master]. Hermosillo: Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Sonora; 2015.

Matsakas L, Karnaouri A, Cwirzen A, Rova U, Christakopoulos P. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. MDPI, [Internet]. 2018 [citado 3 noviembre 2021]; 23. Disponible en: https://doi.org/10.3390/ molecules23071822

Low LE, Teh KC, Siva SP, Chew IM, Mwangi WW, Chew CL, et. al. Lignin nanoparticles: The next green nanoreinforcer with wide opportunity. Environ. Nanotechnol Monit Manag [Internet]. 2016 [Citado 10 noviembre 2021]; 15(5). Disponible en: https://doi.org/10.1016/j.enmm.2020.100398

De Bhowmick G, Sarmah AK, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol, [Internet]. 2018 [Citado 4 noviembre 2021]; 247: 1144–1154. Disponible en: https://doi.org/10.1016/j.biortech.2017.09.163

Katsimpouras C, Zacharopoulou M, Matsakas L, Rova U, Christakopoulos P, Topakas E. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresour Technol. 2017; 244:1129-1136.

Oliva JM, Negro, MJ, Manzanares P, Ballesteros I, Chamorro MA, Sáez F. et al. Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. MDPI [Internet]. 2017. [citado 6 noviembre 2021]; 3(15). Disponible en: https://doi.org/10.3390/fermentation3020015

Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process Technol [Internet]. 2020 [citado 3 noviembre 2021]; 199: 106244. Disponible en: https://doi.org/10.1016/j.fuproc.2019.106244.

Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B. et al. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, [Internet]. 2020 [citado 3 noviembre 2021]; 199: 117457. Disponible en: https://doi.org/10.1016/j.energy.2020.117457

Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review. Carbohydr. Polym., [Internet]. 2015 [citado 3 noviembre 2021]; 117: 624–631. Disponible en: https://doi.org/10.1016/j.carbpol.2014.10.012

Gurgel-da Silva AR, Torres Ortega CE, Rong BG. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresour Technol. [Internet]. 2016 [citado 6 noviembre 2021]; 218:561-570. Disponible en: https://doi.org/10.1016/j.biortech.2016.07.007.

Biswas R, Uellendahl H, Ahring, BK. Wet Explosion: a Universal and Efficient Pretreatment Process for Lignocellulosic Biorefineries. Bioenerg. Res. [Internet]. 2015 [citado 10 noviembre 2021]; 8: 1101–1116. Disponible en: https://doi.org/10.1007/s12155-015-9590-5

Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi A. et al. Insight into progress in pre-treatment of lignocellulosic biomass. Energy [Internet]. 2017 [citado 3 noviembre 2021]; 122: 724–745. Disponible en: https://doi.org/10.1016/j.energy.2017.01.005.

Jaisamut K, Paulová L, Patáková P, Kotúčová S, Rychtera M. Effect of sodium sulfite on acid pretreatment of wheat straw with respect to its final conversion to ethanol. Biomass Bioenergy [Internet]. 2016 [citado 5 noviembre 2021]; 95: 1–7. Disponible en: https://doi.org/10.1016/j.biombioe.2016.08.022

Nosratpour MJ, Karimi K, Sadeghi M. Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J. Environ. Manage [Internet]. 2018 [citado 3 noviembre 2021]; 226: 329–339. Disponible en: https:// doi: 10.1016/j.jenvman.2018.08.058.

Mankar AR, Pandey A, Modak A, Pant KK. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour Technol [Internet]. 2021 [citado 6 noviembre 2021]; 334:125235. Disponible en: https://doi.org/10.1016/j.biortech.2021.125235

Arjan S, Wouter H. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process Green Chem [Internet]. 2017 [citado 6 noviembre 2021]; 19:5505-5514, Disponible en: https://doi.org/10.1039/C7GC02379K

Volynets B, Ein-Mozaffari F, Dahman Y. Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing. Green Process. Synth. 2017; 6: 1‒22.

Chen H, Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 2016; 57: 468‒478.

Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R, Arvai AS, et al. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci 2014; 111 (23): 8446–8451.

Westereng B, Agger JW, Horn SJ, Vaaje-Kolstada G, Aachmann FL, Stenstrøm YH, et al. Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A. 2013; 1271: 144–152.

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013; 6 (1): 41.

Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acid Res. 2014; 42 (D1): D490–D495.

Hemsworth GR, Ciano L, Davies GJ, Walton PH. Production and spectroscopic characterization of lytic polysaccharide monooxygenases. Methods Enzymol. 2018; 613: 63–90.

Valenzuela SV, Ferreres G, Margalef G, Pastor FIJ. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Carbohydr Res. 2017; 448: 205–211.

Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, et al, Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016; 352: 1098–1101.

Eijsink VGH, Petrovic D, Forsberg Z, et al. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol Biofuels [Internet]. 2019 [citado en 10 de enero 2022]; 12:58. Disponible en: https//doi.org/10.1186/s13068-019-1392-0

Chylenski P, Petrovic DM, Müller G, Dahlstrom M, Bengtsson O, Lersch M, et al. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnol. Biofuel. 2017; 10: 177.

Kumar, Bikash & Verma, Pradeep. Enzyme mediated multi-product process: A concept of bio-based refinery. Ind Crops Prod [Internet]. 2020 [citado 3 noviembre 2021]; 154. 112607. Disponible en: https//doi.org/10.1016/j.indcrop.2020.112607.

Singhania R, Dixit P, Patel AK, Giri BS, Kuo C, Chen C, et al. Role and significance of lyticpolysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. Bioresour Technol [Internet]. 2021 [citado 3 noviembre 2021]; 335: 125261. Disponible en: https://doi.org/10.1016/j.biortech.2021.125261.

Kubicek CP, Kubicek EM. Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem Biol. 2016; 35: 51‒57

Singhania RR, Patel AK, Pandey A, Ganansounou E. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresour. Technol. 2017; 245: 1352‒1361

Novozymes: Bioenergy. Enzymes for biomass conversión [Internet], Copenhagen, Dinamarca: [consultado 5 noviembre 2021] Disponible en: https://biosolutions.novozymes.com/en/bioenergy/biomass-conversion

Ghose T K. Measurement of cellulase activities. Pure Appl. Chem. 1987; 59(2): 257-268.

Acelerasse 1500: Cellulase Enzyme Complex for Lignocellulosic Biomass Hydrolysis, [Internet], Delaware, Estados Unidos: Dupont [consultado 5 setiembre 2021]; Disponible en: http://www.shinshu-u.ac.jp/faculty/engineering/chair/chem010/manual/accellerase1500_Dupont.pdf

Yang JE, Kim JK, Lee S H, Yu J, Kim KH. Evaluation of commercial cellulase preparations for the efficient hydrolysis of hydrothermally pretreated empty fruit bunches. BioRes. 2017; 12(4), 7834-7840.

Salcedo J, López J, Florez L. Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha de caña de azúcar. Dyna. 2011; 169:182-190.

Daoutidis P, Kelloway A, Marvin WA, Rangarajan S, Torres AI. Process systems engineering for biorefineries: new research vistas. Curr Opin Chem Eng [Internet]. 2013 [citado 3 noviembre 2021]; 2(4): 442–447. Disponible en: https://doi.org/10.1016/j.coche.2013.09.006.

Sacramento-Rivero JC. A methodology for evaluating the sustainability of biorefineries: framework and indicators. Biofuels Biopro. Bioref. 2012; 6:32–44.

Dieudonne B, Solvason C, Sammons N, Chambost V, Bilhartz D, Eden M, et al. Product Portfolio Selection and Process Design for the Forest Biorefinery. En: Stuart P, El-Halwagi M. Integrated Biorefineries: Design, analysis and Optimization. Taylor and Francis Editors; 2012. P. 4-33.

Holladay JE, Bozell JJ, White JF, Johnson D. Top Value-Added Chemicals from Biomass-Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. En: Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) Staff. Oak Ridge; U.S. Department of Energy. 2007. p. 30-87.

Sammons NE, Yuan W, Eden MR, Askoy B, Cullinan HT. Optimal biorefinery product allocation by combining process and economic modeling. Chem Eng Res Des, 2008; 86: 800–808.

Published

2022-08-01

How to Cite

Suárez Matallana, G. A., Sánchez Atahualpa, S. R., Lazaro Riquez, A. ., & Rodríguez Zúñiga, U. F. (2022). Lignocellulose Biocatalysis Concepts from a Process and Systems Engineering Approach: a review. Perfiles, 1(28), 36-49. https://doi.org/10.47187/perf.v1i28.179