Influence of the catalyst type on post-consumer polyethylene terephthalate (PET) glycolysis reaction performance.

Authors

  • Paúl Gustavo Palmay Paredes Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería Química, Riobamba, Ecuador.
  • Michele Cristina Alvarado Guilcapi Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería Química, Riobamba, Ecuador.
  • Mishell Carolina Sánchez Rojas Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Ingeniería Química, Riobamba, Ecuador.

DOI:

https://doi.org/10.47187/perf.v1i28.172

Keywords:

Depolymerization, chemical recycling, plastic, ethylene glycol, catalysis, bis-2-hydroxyethyl terephthalate

Abstract

Polyethylene terephthalate (PET) is a thermoplastic from the non-biodegradable polyester family. One of the best methods for recovering polymer waste is chemical recycling. The objective of this study was the chemical recycling of PET through catalyzed glycolysis to obtain Bis-2-hydroxyethyl-terephthalate (BHET), evaluating the catalytic action of substances such as Zinc Acetate, Sodium Carbonate and Zinc Oxide, under conditions of atmospheric pressure, temperature of 180-190°, time of two hours and PET/EG ratio of 1:3. The reaction was carried out in a glass reactor adapted with a two-neck balloon, obtaining a fine white powder with yields of 85.16, 82.06 and 80.69% for each substance, respectively. The products were analyzed by infrared spectroscopy, demonstrating the existence of functional groups characteristic of BHET, in addition, it was identified that the reaction with zinc acetate presented the best performance, with a value of 85.16%, since the substance has the most active metal. Through the glycolysis of PET, BHET will be obtained, which is used in the manufacture of products such as polyurethane foams, polymeric concrete, polyester resins, providing an improved recycling alternative to said material.

Downloads

Download data is not yet available.

References

Kumar R, Singh R. Perspectiva de reciclaje de productos plásticos para minimizar la contaminación ambiental. Encyclopedia of Renewable and Sustainable Materials [Internet]. 2020 [citado 2 diciembre 2020]; 3: 695-703. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780128035818113025

Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH. Desarrollos actuales en el reciclaje químico de desechos de tereftalato de polietileno posconsumo para la producción de nuevos materiales: una revisión infinita. [Internet]. 2019 [citado 8 diciembre 2020]; 225 : 1052-64. Disponible en: http://www.sciencedirect.com/science/article/pii/S095965261931087X

Yasir A, Khalaf A, Khalaf M. Preparación y Caracterización de Oligómero a partir de PET Reciclado y Evaluado como Inhibidor de Corrosión para Material C-Steel en HCl 0.1 M. [Internet]. 2017 [citado 19 febrero 2021]; 07 :1-15. Disponible en: https: DOI:10.4236/ojopm.2017.71001

Guo Z, Lindqvist K, de la Motte H. Un proceso de reciclaje eficiente de la glucólisis de PET en presencia de un nanocatalizador sostenible. [Internet].2018 [citado 12 de mayo 2021];135 (21).

Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH. Desarrollos actuales en el reciclaje químico de desechos de tereftalato de polietileno posconsumo para la producción de nuevos materiales: una revisión infinita. [Internet]. 2019 [citado 8 diciembre 2020]; 225 : 1052-64. Disponible en: http://www.sciencedirect.com/science/article/pii/S095965261931087X

Sheel A, Pant D. 4 - Despolimerización química de botellas de PET mediante glucólisis. Recycling of Polyethylene Terephthalate Bottles [Internet]. 2019 [citado 3 diciembre 2020]. 61-84. Disponible en: http://www.sciencedirect.com/science/article/pii/B9780128113615000043

Langer E, Bortel K, Waskiewicz S, Lenartowicz-Klik M. 2 - Classification of Plasticizers Derived from Post-Consumer PET [Internet]. 2020 [citado 3 marzo 2021];3:13-44.Disponible en: https://www.sciencedirect.com/science/article/pii/B9780323462006000027

Sangalang A, Bartolome L, Kim DH. Generalized kinetic analysis of heterogeneous PET glycolysis: Nucleation-controlled depolymerization. [Internet]. 2015 [citado 9 diciembre 2020];115:45-53. Disponible en: http://www.sciencedirect.com/science/article/pii/S0141391015000580

Deng L, Li R, Chen Y, Wang J, Song H. New effective catalysts for glycolysis of polyethylene terephthalate waste: tropine and tropine-zinc acetate complex. [Internet]. 2021[citado 12 mayo 2021];3:116419. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167732221011430

Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. [Internet]. 2017 [citado 12 mayo 2021];69:24-58. Disponible en: https://www.sciencedirect.com/science/article/pii/S0956053X17305354

Shojaei B, Abtahi M, Najafi M. Chemical recycling of PET: A stepping-stone toward sustainability [Internet].2020 [citado 8 diciembre 2020];31(12):2912-38.

Nguyet Thi Ho L, Minh Ngo D, Cho J, Jung HM. Condiciones mejoradas de glucólisis catalítica para el reciclaje químico de poli(tereftalato de etileno) modificado con glicol. [Internet]. 2018 [citado 12 mayo 2021];155:15-21.

Van-Pham D-T, Le Q-H, Lam T-N, Nguyen C-N, Sakai W. Four-factor optimization for PET glycolysis with consideration of the effect of sodium bicarbonate catalyst using response surface methodology. [Internet]. 2020 [citado 1 marzo 2021];179: 109257.

Stoski A, Viante MF, Nunes CS, Muniz EC, Felsner ML, Almeida CAP. Producción de oligómeros a través de la glucólisis de poli (tereftalato de etileno): efectos de la temperatura y el contenido de agua en la extensión de la reacción. [Internet]. 2016 [citado 19 febrero 2021]; 65(9):1024-30.

Nabgan W, Nabgan B, Tuan Abdullah TA, Ngadi N, Jalil AA, Hassan NS, et al. Conversion of polyethylene terephthalate plastic waste and phenol steam reforming to hydrogen and valuable liquid fuel: Synthesis effect of Ni–Co/ZrO_2 nanostructured catalysts. [Internet]. 2020 [citado 12 mayo 2021];45(11):6302-17. Disponible en: https://www.sciencedirect.com/science/article/pii/S0360319919346397

Canevarolo SV. 10 - Experiments in Polymer Science. En: Canevarolo SV, editor. Polymer Science [Internet]. Hanser; 2020 [actualizado 12 enero 2020 ; citado 23 de enero de 2021] Disponible en: http://www.sciencedirect.com/science/article/pii/B9781569907252500118

Flores S, Francisco D. Degradation of plastic materials "PET" (polyethylene terephtalate), as an alternative for its management. [Tesis doctoral]. Quito: Pontificia Universidad Católica del Ecuador ; Disponible en: http://repositorio.puce.edu.ec:80/xmlui/handle/22000/13224

Sang T, Wallis CJ, Hill G, Britovsek GJP. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. [Internet].2020 [citado 12 mayo 2021];136:109873. Disponible en: https://www.sciencedirect.com/science/article/pii/S0014305720315883

Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA. Plastics and the microbiome: impacts and solutions. Environ Microbiomes.[Internet]. 2021 [citado 17 marzo 2021];16(1).

Shuangjun C, Weihe S, Haidong C, Hao Z, Zhenwei Z, Chaonan F. Glycolysis of poly(ethylene terephthalate) waste catalyzed by mixed Lewis acidic ionic liquids. [Internet]. 2021 [citado 12 mayo 2021];143(5):3489-97.

Bahramian A. Synergistic effects of gamma irradiation on the PET surface and heat treatment of hydrotalcite catalyst supported by Pt/TiO2 nanoparticles on PET depolymerization rate. [Internet]. 2021[citado 26 febrero 2021];53(2):215-29.

Al-Sabagh AM, Yehia FZ, Eissa AMF, Moustafa ME, Eshaq Gh, Rabie AM, et al. Líquidos iónicos que contienen acetato de Cu y Zn como catalizadores para la glucólisis de poli (tereftalato de etileno). [Internet]. 2014 [citado 20 enero 2021];110:364-77. Disponible en: http://www.sciencedirect.com/science/article/pii/S0141391014003723

Esquer R, García JJ. Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. [Internet]. 2019 [citado 12 mayo 2021];902:120972. Disponible en: https://www.sciencedirect.com/science/article/pii/S0022328X19304152

Fuentes CA, Gallegos MV, García JR, Sambeth J, Peluso MA. Glucólisis catalítica de poli (tereftalato de etileno) utilizando óxidos de zinc y cobalto reciclados de baterías gastadas. Valorización de Biomasa Residuos. [Internet]. 2020 [citado 5 marzo 2021];11(9):4991-5001. Disponible en: https://doi.org/10.1007/s12649-019-00807-6

Boltzmann EP, Atmospheric W, Energy T. Fundamental Physical Constants. Phys Today. [Internet]. 2013 [citado 2 abril 2021];80(1):310-11.Disponible en: 10.1186/s40691-014-0001-x.

Published

2022-08-01

How to Cite

Palmay Paredes, P. G., Alvarado Guilcapi, M. C., & Sánchez Rojas, M. C. (2022). Influence of the catalyst type on post-consumer polyethylene terephthalate (PET) glycolysis reaction performance. Perfiles, 1(28), 6-13. https://doi.org/10.47187/perf.v1i28.172