Study of the effects produced by the transformation conditions on the viscosity of recycled polyethylenterephthalate (pet).
DOI:
https://doi.org/10.47187/perf.v1i27.144Keywords:
PPolyethylene terephthalate, recycling, chemical degradation, intrinsic viscosity, plastometerAbstract
The effect produced by the processing conditions on the viscosity of recycled polyethylene terephthalate was studied. For this, a simulation of the processing was carried out using a melt flow index plastometer, based on a factorial design of experiments 22. The temperature and the retention time of the polymer inside the processing chamber were selected as independent factors, while the intrinsic viscosity of the polyethylene terephtalate was the response variable. Through a linear regression analysis of the experimental design, it was possible to obtain for the first time the equation of the model adjusted for intrinsic viscosity, on which the two factors studied (time and temperature) as well as the interaction between them presented a significant effect with a level 95% confidence. In all cases, there was a decrease in the viscosity of the recycled polyethylene terephthalate, with the highest incidence being 30% when the temperature increased from 260 to 280 °C. For a recycling process, it is recommended to maintain a temperature profile that does not exceed 260 °C and residence times equal to or less than 10 min.
Downloads
References
Çaykara T, Sande MG, Azoia N, Rodrigues LR and Silva CJ. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces. Med. Microb. and Imm. 2020; 209: 363–372.
Begum SA, Rane AV and Kanny K. Applications of compatibilized polymer blends in automobile industry. En: Ajitha AR and Sabu Thomas, Editores. Compatibilization of Polymer Blends. Micro and Nano Scale Phase Morphologies, Interphase Characterization and Properties. eBook. Amsterdam: Elsevier, 2020. p. 563-593.
Huang J, Yang X, Yu J, Han J, Jia C, Ding M et al. A Universal and Arbitrary Tactile Interactive System Based on Self-powered Optical Communication. Nan. Energ. 2020; 69 (March): 10441.
Zeng JJ, Gao WY, Duan ZJ, Bai YL, Guo YC, Ouyang LJ. Axial compressive behavior of polyethylene terephthalate/carbon FRP confined seawater sea-sand concrete in circular columns. Cons. and Build. Mat. 2020; 234: 117383.
Senthil Kumar P and Yaashikaa PR. Case Studies on Recycled Polyesters and Different Applications. En: Subramanian Senthilkannan Muthu, editor. Environmental Footprints of Recycled Polyester. eBook. Singapore: Springer; 2020. p. 99-112.
Scribd Inc. Plásticos–Situación en 2019 [Internet]. 1ra ed. California: Trip Adler; 2020 [actualizado 20 Septiembre 2021; citado 15 Agosto 2021]. Disponible en: https://es.scribd.com/document/484313664/Plastics-the-facts-Mar2019-esp.
Business wire Inc. Global Polyethylene Terephtalate Market Report 2017 - By End-Use Industries, Products & Regions - Research and Markets [Internet]. Dublin: Business Wire; 2017 [actualizado 10 Enero 2021; citado 12 Agosto 2021]. Disponible en: https://www.businesswire.com/news/home/20170914005775/en/Global-Polyethylene-Terephtalate-Market-Report-2017---By-End-Use-Industries-Products-Regions---Research-and-Markets.
Zhang H and Wen ZG. The consumption and recycling collection system of PET bottles: a case study of Beijing, China. Wast. Manag. 2014; 34: 987-998.
Sasse, F and Emig, G. Chemical recycling of polymer materials. Chem. Eng. Technol. 1998; 21: 777-789.
Stanica-Ezeanu D and Matei D. Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Sci. Rep. 2021; 11: 4431.
Throne JL. Effect of recycle on properties and profits: Algorithms. Adv. Polym. Tech. 1987; 7: 347-360.
Gupta VB, Bashir Z. PET Fibers, Films, and Bottles: Sections 1–4. En: Fakirov S, editor. Handbook of Thermoplastic Polyesters. Vol 1. 2da ed. Weinheim: Wiley VCH Verlag GmbH & Co. KGaA, 2002. p. 317-361.
Brandrup J. Polymer handbook. Vol 2. 4ta ed. New York: Intersciene Publishers; 1978.
Silva Freitas FL, Chinellato AC, Rodrigues Pereira Filho E and Cruz SA. Evaluation of the effect of additives on thermo-oxidative and hydrolytic stabilization of recycled post-consumer poly (ethylene terephthalate) using Design of Experiments. Polym. Test. 2020; 81: 106275.
Sheldon, RP. The influence of extrusion conditions on the crystallization of polyethylene terephthalate film. Polym. 1963; 4: 213-219.
Curtzwiler G, Vorst K, Danes JE, Auras R, Singh J. Effect of recycled poly(ethylene terephthalate) content on properties of extruded poly(ethylene terephthalate) sheets. J. of Plast. Film & Sheet. 2011; 27: 65-86.
Giraldi ALFM, Bizarria MTM, Silva AA, Velasco JI, Marcos AdA, Mei LHI. Effects of Extrusion Conditions on the Properties of Recycled Poly(Ethylene Terephthalate)/Nanoclay Nanocomposites Prepared by a Twin-Screw Extruder. J. of App. Polym. Sci. 2008; 108: 2252–2259.
Matayabas JC, Turner SR. Nanocomposite technology for enhancing the gas barrier of polyethylene terephtalate. In: Pinnavaia TJ and Beall GW, editores. Polymer–clay nanocomposites. Vol 1. 1ra ed. New York: John Wiley & Sons Ltd; 2000. p. 207–225.
Fang T, Li J, Yan W, Gu D, Du Z. Effect of calcium carbonate as pore-forming agent on properties of recycled polyethylene terephthalate masterbatch. J. of Phys.: Conference Series. 2021; 1790: 012011.
Matweb Material Properties Data [Página principal de internet], Blacksburg: MatWeb LLC; 2020. [actualizada en Marzo de 2011; acceso 10 agosto 2021] http://www.matweb.com/search/datasheet.aspx?matguid=6e09c609f7364fc6a997e6bbafc609d7&ckck=1.
Lopez R. Diseño estadístico de experimentos. Vol 1. 3ra ed. Ciudad de La Habana: Científico-Técnica; 1988.
Velázquez-Infante JC, Pérez-Rodríguez AT y García JM. Estudio del proceso de reciclado de las botellas de polietilentereftalato. En: Francisco Torres Editor. Libro de memorias. 6ta Convención y Feria Internacionales “METANICA 2001”. 2001 Jul 17-20; La Habana. Ciudad de La Habana: Científico Técnica; 2001. 101-109.
Huggins ML. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Am. Chem. Soc. 1942; 64: 2716-2718.
Kraemer EO. Molecular Weights of Celluloses and Cellulose Derivates. Ind. Eng. Chem. 1938; 30: 1200-1203.
Solomon OF and Ciuta IZ. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J. Appl. Polym. Sci. 1962; 6: 683-686.
Elliott JH, Horowitz KH and Hoodock T. A one‐point intrinsic viscosity method for polyethylene and polypropylene. J. Appl. Polym. Sci. 1970; 14: 2947-2963.
Abdel-Azim AA, Atta MA, Farahat MS and Boutros WY. Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polym. 1998; 39: 6827-6833.
Masmoudi F, Alix S, Buet S, Mehri A, Bessadok A, Jaziri M et al. Design and Characterization of a New Food Packaging Material by Recycling Blends Virgin and Recovered polyethylene terephthalate. Polym. Eng. Sci. 2020; 60: 250-256.
Zimmerman H and Kim NT. Investigations on thermal and hydrolytic degradation of poly (ethylene terephthalate). Polym. Eng. Sci. 1980; 20: 680–683.
Housseini SS, Taheri S, Zadhoush A, Mehrabani-Zeinabad A. Hydrolytic degradation of poly (ethylene terephthalate). J. Appl. Polym. Sci. 2007; 103: 2304–2309.
Badia JD, Martinez-Felipe A, Santoja-Blasco L, Ribes-Greus A. Thermal and thermo-oxidative stability of reprocessed poly (ethylene terephthalate). J. Anal. Appl. Pyr. 2013; 99: 191–202.
Al-Abdulrazzak S, Jabarin SA. Processing characteristics of poly (ethylene terephthalate): hydrolytic and thermal degradation. Polym. Int. 2002; 51: 164–173.
Buxbaum LH. The Degradation of Poly (ethylene terephthalate). Ang. Chem. Int. 1968; 7: 182–190.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.