NUEVAS FUENTES DE ANTIOXIDANTES NATURALES: CARACTERIZACIÓN DE COMPUESTOS BIOACTIVOS EN CINCO FRUTOS NATIVOS DE CHILE

Autores/as

  • ME. Romero Román Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile.
  • F. Noriega Vásquez Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile.
  • M. Farías Villagra Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile
  • P. Jara Zapata Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile
  • B. Vera Flores Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile
  • MD. López Belchi Universidad de Concepción, Facultad de Agronomía, Departamento de Producción Vegetal, Laboratorio de Análisis Químico, Chillan, Chile

DOI:

https://doi.org/10.47187/perf.v2i22.54

Palabras clave:

berries, polifenoles, antocianinas, capacidad antioxidante, HPLC-DAD

Resumen

Diferentes berries de la zona centro y sur de Chile fueron analizados con el fin de buscar fuentes promisorias de polifenoles con clara actividad sobre la salud humana. Se estudiaron cinco bayas nativas: arrayan, frutilla blanca, murtilla y calafate, y un berry tradicional (uva tintorera). Se determinó in vitro sus propiedades antioxidantes según el ensayo de polifenoles totales de Folin Ciocalteu, antocianinas por pH diferencial, capacidad antioxidante por medición de capacidad de reducción del radical libre 2.2-difenil-1- picrilhidracilo (DPPH) y poder de reducción férrica (FRAP) y perfil químico por HPLC-DAD. De los cinco berries, calafate registró el valor más alto (1066,4 ± 24,9 mg GAE/100g de muestra) para polifenoles totales y antocianinas (1031,9 ± 48,1 mg de cianidina-3-glucósido/100g de muestra) seguido por uva tintorera. Calafate presentó excelente poder reductor (11279,2 ± 2027,4 μmol Trolox/100g ensayo FRAP y 5235,0 ±445,9, μmol/100g en DPPH). El perfil químico de antocianinas mostró delfinidina, cianidina, malvidina, petunidina, peonidina y pelargonidina en los cinco berries. Alrededor de 30 flavonoles derivados de quercetina, myricetina e isorhamnetina fueron identificados así cómo elagitaninos presentes en frutilla blanca, compuestos muy interesantes para estudios posteriores. Estos resultados contribuyen a destacar el uso potencial de estos berries como alimentos funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Blasa M, Gennari L, Angelino D, Ninfali P. Chapter 3 - Fruit and Vegetable Antioxidants in Health. In: Watson RR, Preedy VR, editors. Bioactive Foods in Promoting Health [Internet]. San Diego: Academic Press; 2010. p. 37–58. Available from: http://www.sciencedirect.com/science/article/pii/B9780123746283000037

Amalesh S, Kumar S, Das G. Roles of flavonoids in Plants. ResearchGate [Internet]. 2011 [cited 2018 Apr 23]; Available from: https://www.researchgate.net/publication/279499208_Roles_of_flavonoids_in_Plants

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci [Internet]. 2016 Dec 29 [cited 2018 Apr 24];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465813/

Ncube B, Van Staden J. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit. Molecules. 2015 Jul 13;20(7):12698–731.

Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M, et al. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors. Plant Cell Physiol. 2012 Sep;53(9):1546–60.

Eichholz I, Huyskens-Keil S, Keller A, Ulrich D, Kroh LW, Rohn S. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem [Internet]. 2011; Available from: http://agris.fao.org/agris-search/search.do?recordID=US201301920818

Neal M, Richardson JR. Time to get personal: A framework for personalized targeting of oxidative stress in neurotoxicity and neurodegenerative disease. Curr Opin Toxicol. 2018 Feb 1;7:127–32.

Walker LC, Jucker M. Neurodegenerative Diseases: Expanding the Prion Concept. Annu Rev Neurosci. 2015;38(1):87–103.

Yang L, Ling W, Du Z, Chen Y, Li D, Deng S, et al. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr Bethesda Md. 2017 Sep;8(5):684–93.

Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018 Jun 10;153:105–15.

Varas B, Castro MH, Rodriguez R, von Baer D, Mardones C, Hinrichsen P. Identification and characterization of microsatellites from calafate (Berberis microphylla, Berberidaceae)1. Appl Plant Sci [Internet]. 2013 Jul 5 [cited 2018 May 5];1(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103124/

Simirgiotis MJ, Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD–ESI-MS and free radical quenching techniques. J Food Compos Anal. 2010;23(6):545–53.

Mariangel E, Reyes-Diaz M, Lobos W, Bensch E, Schalchli H, Ibarra P. The antioxidant properties of calafate (Berberis microphylla) fruits from four different locations in southern Chile. Cienc E Investig Agrar. 2013 Apr;40(1):161–70.

Simirgiotis MJ, Bórquez J, Schmeda-Hirschmann G. Antioxidant capacity, polyphenolic content and tandem HPLC–DAD–ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem. 2013 Aug 15;139(1):289–99.

Junqueira-Gonçalves MP, Yáñez L, Morales C, Navarro M, A. Contreras R, Zúñiga GE. Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni molinae Turcz.) Fruits. Assessment of Antioxidant and Antibacterial Activity. Molecules. 2015 Mar 31;20(4):5698–713.

Figueiredo-González M, Regueiro J, Cancho-Grande B, Simal-Gándara J. Garnacha Tintorera-based sweet wines: Detailed phenolic composition by HPLC/DAD–ESI/MS analysis. Food Chem. 2014 Jan 15;143:282–92.

Burin B, Falcao L, Valdemoro L. Color, contenido fenólico y actividad antioxidante del jugo de uva. Ciênc Tecnol Aliment. 2010;30(4):1–6.

Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int. 2005 Oct;88(5):1269–78.

Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF. Identification of Procyanidins and Anthocyanins in Blueberries and Cranberries (Vaccinium Spp.) Using High-Performance Liquid Chromatography/Mass Spectrometry. J Agric Food Chem. 2001 Mar 1;49(3):1270–6.

Aaby K, Skrede G, Wrolstad R. Antioxidant Activities in Flesh and Achenes of Strawberries (Fragaria ananassa). J Agric Food Chem. 2005;53(10):4032–40.

Mathew M, Subramanian S. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders. PLOS ONE. 2014 Jan 23;9(1):e86804.

Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965 Jan 1;16(3):144–58.

Fuleki T, Francis F. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 1968;33(1):72–7.

Brito A, Areche C, Sepúlveda B, Kennelly EJ, Simirgiotis MJ. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts. Molecules. 2014 Jul 28;19(8):10936–55.

Castro-López C, Rojas R, Sánchez-Alejo EJ, Niño-Medina G, Martínez-Ávila GCG. Phenolic Compounds Recovery from Grape Fruit and By- Products: An Overview of Extraction Methods. In: Morata A, Loira I, editors. Grape and Wine Biotechnology [Internet]. Rijeka: InTech; 2016 [cited 2018 Mar 13]. p. Ch. 05. Available from: http://dx.doi.org/10.5772/64821

Ruiz A, Bustamante L, Vergara C, von Baer D, Hermosín-Gutiérrez I, Obando L, et al. Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chem. 2015 Jan 15;167:84–90.

Lopez MD, Romero ME, Vera B. El calafate. Su industrialización abre nuevas perspectivas. Indualimentos [Internet]. 2018 abil;110. Available from: http://www.indualimentos.cl/edic.html

Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med. 2010 Dec 1;31(6):513–39.

FAO. Agricultura mundial: hacia los años 2015/2030 [Internet]. 2015 [cited 2017 Jul 27]. Available from: http://www.fao.org/docrep/004/y3557s/y3557s06.htm

Cárdenas G, Arrazola G, Villalba M. Frutas tropicales: fuente de compuestos bioactivos naturales en la industria de alimentos-Tropical Fruits: Source of Natural Compounds Bioactives Food Industry | Cárdenas Baquero | Ingenium Revista de la facultad de ingeniería. 2016 [cited 2017 Nov 28]; Available from: http://revistas.usb.edu.co/index.php/Ingenium/article/view/2152

Ruiz A, Hermosín-Gutiérrez I, Vergara C, von Baer D, Zapata M, Hitschfeld A, et al. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res Int. 2013 May 1;51(2):706–13.

Wightman JD, Heuberger RA. Effect of grape and other berries on cardiovascular health. J Sci Food Agric. 2015;95(8):1584–97

Descargas

Publicado

2019-07-31

Cómo citar

Romero Román, M., Noriega Vásquez, F., Farías Villagra, M., Jara Zapata, P., Vera Flores, B., & López Belchi, M. (2019). NUEVAS FUENTES DE ANTIOXIDANTES NATURALES: CARACTERIZACIÓN DE COMPUESTOS BIOACTIVOS EN CINCO FRUTOS NATIVOS DE CHILE. Perfiles, 2(22), 34-41. https://doi.org/10.47187/perf.v2i22.54