CONTAMINACIÓN DEL AIRE A FILO DE CALLE EN QUITO, CASO ESTUDIO GUAYAQUIL Y ESPEJO

Autores/as

  • David Chuquer Solá Facultad de Ciencias Exactas y Naturales. Pontificia Universidad Católica del Ecuador. Av. 12 de Octubre 1076 y Roca, Quito, Ecuador. Código postal 170525.
  • Santiago Ampudia Vásquez Facultad de Ciencias Exactas y Naturales. Pontificia Universidad Católica del Ecuador. Av. 12 de Octubre 1076 y Roca, Quito, Ecuador. Código postal 170525.
  • Carolina Puertas De La Cruz Facultad de Ciencias Exactas y Naturales. Pontificia Universidad Católica del Ecuador. Av. 12 de Octubre 1076 y Roca, Quito, Ecuador. Código postal 170525.
  • Leonardo Bustamante Granda Facultad de Ciencias Exactas y Naturales. Pontificia Universidad Católica del Ecuador. Av. 12 de Octubre 1076 y Roca, Quito, Ecuador. Código postal 170525.
  • Carlos Reina Velasco Facultad de Ciencias Químicas, Universidad Central del Ecuador. Francisco Viteri y Gilberto Sobral S/N, Ciudad Universitaria, Quito, Ecuador. código postal 170521.
  • Francisco Ramírez Cevallos Facultad de Arquitectura, Diseño y Arte. Pontificia Universidad Católica del Ecuador. Av. 12 de Octubre 1076 y Roca, Quito, Ecuador. Código postal 170525.

DOI:

https://doi.org/10.47187/perf.v2i20.38

Palabras clave:

contaminación del aire, Quito, contaminantes criterio, ACP, correlación cruzada

Resumen

Se estudió la contaminación del aire a filo de calle en el Centro Histórico de Quito (DMQ) en un punto de alto flujo vehicular mediante el monitoreo continuo de gases y material particulado entre el 5 y 12 de abril de 2018. Se obtuvieron los perfiles horarios de las concentraciones de contaminantes y se pudo explicar su comportamiento. Las mediciones en el estudio no sobrepasaron los límites permisibles nacionales ni internacionales de calidad del aire; sin embargo se observaron picos anómalos en el caso del dióxido de azufre. Se evaluó la correlación cruzada de las series de tiempo entre los datos reportados por estaciones regionales de la secretaria de ambiente del dmq y los datos obtenidos en este estudio, hallándose que el monóxido de carbono presenta una mayor concentración a filo de calle. Al realizar el análisis de componentes principales (acp) se determinó varios contaminantes correlacionados, lo que corroboran sus ciclos de formación y demuestran la influencia de factores meteorológicos en la contaminación de aire a filo de calle. Finalmente se determinó que las concentraciones de pm10 en aire interior son mayores a lo registrado en aire exterior en el sitio de muestreo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Prüss-Ustün, A., Wolf, J., Corvalan, C., Bos, R., Neira, M. Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks [internet]. 2da ed. geneva: World Health organization; 2016 [citado 21 de agosto de 2018]. Disponible en: http:// www.who.int/quantifying_ehimpacts/publications/preventing-disease/en/

WHO. Ambient air pollution: A global assessment of exposure and burden of disease [inter- net]. Geneva: WHo; 2016. 1-131 p. disponible en: http://www.who.int/phe/publications/air-pollu- tion-global-assessment/en/

Consejo Directivo de OPS. Plan Estratégico de la organización panamericana de la salud 2014-2019. «En pro de la salud: desarrollo sostenible y equidad» [internet]. Washington: ops; 2013 oct [citado 21 de agosto de 2018] p. 1-162. Report no.: od345. Disponible en: http://apps.who.int/ iris/handle/10665/165204

Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Archives of toxicology. 1 de julio de 2016; 90(7):1541-53.

Cevallos VM, Díaz V, Sirois CM. Particulate matter air pollution from the city of quito, Ecuador, activates inflammatory signaling pathways in vitro. Innate Immunity. 2017; 23(4):392-400.

Lee BP, Li YJ, Yu JZ, Louie PKK, Chan CK. Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—overview of 4 months of continuous hi- gh-resolution aerosol mass spectrometer measurements. J geophys res atmos. 18 de junio de 2015; 120(14):7040-58.

Romero, Daniel. De 488 mil vehículos, 400 mil se matricularon en el 2016 en Quito. El comercio [internet]. 12 de enero de 2017 [citado 21 de agosto de 2018]; disponible en: https://www.elcomercio.com/actualidad/quito-vehiculos-matriculacion-tramites.html

Raysoni AU, Armijos RX, Weigel MM, Montoya T, Eschanique P, Racines M, et al. Assessment of indoor and outdoor pm species at schools and residences in a high-altitude Ecuadorian urban center. Environ pollut. Julio de 2016; 214:668-79.

Brachtl MV, Durant JL, Perez CP, Oviedo J, Sempertegui F, Naumova EN, et al. Spatial and tem- poral variations and mobile source emissions of polycyclic aromatic hydrocarbons in quito, Ecua- dor. Environ pollut. 1 de febrero de 2009; 157(2):528-36.

Secretaria de Ambiente del DMQ. Informe final Inventario de emisiones de contaminantes criterio 2011 [internet]. Quito: secretaria de ambiente del dmq; 2014 [citado 21 de agosto de 2018] p.1-53. report no.: 5to. Disponible en: http://www.quitoambiente.gob.ec/ambiente/index.php/infor- mes#inventario-de-emisiones-2011

Rosario L, Pietro M, Francesco SP. Comparative analyses of urban air quality monitoring sys- tems: passive sampling and continuous monitoring stations. Energy procedia. 1 de noviembre de 2016; 101:321-8.

Diaz Suarez Valeria. Informe de la calidad de aire - 2016 [internet]. Quito: Municipio del DMQ; 2017 may p. 1-55. Report no.: iamq/17. Disponible en: http://www.quitoambiente.gob.ec/ambiente/images/secretaria_ambiente/red_monitoreo/informacion/ica2016.pdf

Moore A, Figliozzi M, Monsere C. Air quality at bus stops. Transp res rec. 9 de octubre de 2012; 2270:76-86.

Wang X (Richard), Oliver Gao H. Exposure to fine particle mass and number concentrations in urban transportation environments of new york city. Transp res d. 1 de julio de 2011; 16(5):384-91.

Gulliver J, Briggs DJ. Personal exposure to particulate air pollution in transport microenviron- ments. ATMOS Environ. 1 de enero de 2004; 38(1):1-8.

Raysoni AU, Armijos RX, Weigel MM, Echanique P, Racines M, Pingitore NE, et al. Evaluation of sources and patterns of Elemental composition of pm2.5 at three low-income neighborhood schools and residences in quito, Ecuador. International Journal of Environmental research and public Health [internet]. 2017; 14(7). Disponible en: http://www.mdpi.com/1660-4601/14/7/674

Ministerio del Ambiente del Ecuador. Norma de calidad del aire ambiente o nivel de inmisión, Libro VI Anexo 4. Registro Oficial jun 7, 2011 p. 8-15.

Venables, W.N., Ripley, B.D. Modern applied statistics with s. 4th ed. new york: springer-ver- lag new york; 2002. 1-498 p. (statistics and computing).

Cazorla M. Análisis de los datos horarios de radiación solar y abundancia de ozono del distrito metropolitano de quito del 2007 al 2012. aci. 2013; 5(2):c67-78.

Cazorla M. Air quality over a populated andean region: insights from measurements of ozone, no, and boundary layer depths. ATMOS pollut res. 1 de enero de 2016; 7(1):66-74.

Zalakeviciute R, López-Villada J, Rybarczyk Y. Contrasted Effects of relative Humidity and precipitation on urban pm2.5 pollution in High Elevation urban areas. Sustainability [internet].

; 10(6). Disponible en: http://www.mdpi.com/2071-1050/10/6/2064

Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. ATMOS chem phys. 2015; 15(8):4399–4981.

WHO. Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide [Internet]. Third revision. Copenhagen: Publications WHO Regional Office for Europe; 2006 [citado 7 de septiembre de 2018]. 484 p. disponible en: http://www.euro.who.int/ data/ assets/pdf_file/0005/78638/E90038.pdf

Goel A, Kumar P. A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmos Environ. 1 de noviembre de 2014; 97:316-31.

Ai ZT, Mak CM. A study of interunit dispersion around multistory buildings with single-sided ventilation under different wind directions. Atmos Environ. 1 de mayo de 2014; 88:1-13.

Armijos RX, Weigel MM, Myers OB, Li W-W, Racines M, Berwick M. Residential Exposure to Urban Traffic Is Associated with Increased Carotid Intima-Media Thickness in Children. J Environ public Health. 2015; 2015:11.

Descargas

Publicado

2018-12-31

Cómo citar

Chuquer Solá, D., Ampudia Vásquez, S., Puertas De La Cruz, C., Bustamante Granda, L., Reina Velasco, C., & Ramírez Cevallos, F. (2018). CONTAMINACIÓN DEL AIRE A FILO DE CALLE EN QUITO, CASO ESTUDIO GUAYAQUIL Y ESPEJO. Perfiles, 2(20), 90-99. https://doi.org/10.47187/perf.v2i20.38