FASEOLAMINA, MOLÉCULA DE INTERÉS EN LA INDUSTRIA ALIMENTARIA Y FARMACÉUTICA, UNA REVISIÓN.
DOI:
https://doi.org/10.47187/perf.v1i28.183Palabras clave:
Fréjol (Phaseolus vulgaris), α-amilasa, faseolamina, inhibidorResumen
Esta investigación se propuso revisar el estado del arte alrededor de la Faseolamina, molécula extraída de Phaseolus vulgaris, de interés para la industria alimentaria y farmacéutica, por su efecto inhibidor sobre las enzimas α-amilasas. La información se rastreó con estas palabras clave: “Faseolamina”, “Inhibidores de α-amilasa”, “Phaseolus vulgaris”, “Reducción de peso”, “Diabetes” en plataformas digitales de las editoriales Wiley Online Library, Springer Nature, MDPI, Taylor Francis, Sage y Google Académico. Se definieron tres ejes de interés, los métodos de extracción de la Faseolamina, las condiciones óptimas de inhibición y la estructura de la molécula. Se determinó mayor pureza molecular con el método de extracción con presión de vacío con dióxido de carbono supercrítico, sin toxicidad ni cambios en el sabor. La inhibición promedio sobre α-amilasas es 91,10% en estudios In vitro e In vivo a nivel gastrointestinal, a un pH de 5,5 y una temperatura de 37º C. Químicamente la Faseolamina es una glicoproteína tetramérica, rica en ácido aspártico, ácido glutámico, serina, treonina y valina, contiene los tres compuestos de lectinas del fréjol: Fito-hemaglutininas (PHA), Arcelinas y los tres inhibidores de α-amilasa. Presenta alta inhibición de α-amilasa intraluminal y duodenal, podría usarse en productos alimenticios y farmacéuticos.
Descargas
Citas
Mollejo V. La importancia del almidón en la dieta y dónde encontrarlo [internet] Revisado: 21 de marzo de 2020. Disponible en: https://www.65ymas.com/salud/alimentacion/importancia-almidon-dieta-donde-encontrarlo_5306_102.html.
IMF BUSINESS SCHOOL. Metabolismo del azúcar en el cuerpo humano [internet] Revisado: 20 de diciembre de 2019. Disponible en: https://blogs.imf-formacion.com/blog/corporativo/industria-alimentaria/metabolismo-del-azucar-en-el-cuerpo-humano/.
Englyst KN, Englyst HN. Carbohydrate bioavailability. Br J Nutr. 2005; 94: 1-11.
Higgins JA. Resistant starch: metabolic effects and potential health benefits. J AOAC Int. 2004; 87: 761-768.
Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, et al. Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr. 1998; 67: 136-142.
OMS. Enfermedades no transmisibles [internet] Revisado: 1 de febrero de 2022. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases#.
OMS. Diez datos sobre la obesidad [internet] Revisado: 29 de octubre de 2019. Disponible en: https://www.who.int/features/factfiles/obesity/es/.
OMS. Diabetes [internet] Revisado: 30 de octubre de 2018. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes.
INEC. Diabetes [internet] Revisado: 28 de diciembre de 2017. Disponible en: https://www.ecuadorencifras.gob.ec/documentos/web-inec/inforgrafias-inec/2017/diabetes.pdf.
OPS. La diabetes, un problema prioritario de salud pública en el Ecuador y la región de las Américas [internet] Revisado: 30 de noviembre de 2018. Disponible en: https://www.paho.org/ecu/index.php?option=com_content&view=article&id=1400:la-diabetes-un-problema-prioritario-de-salud-publica-en-el-ecuador-y-la-region-de-las-americas&itemid=360.
Castro L. Inhibidores de glucosidasas en alimentos [internet] Revisado 26 de noviembre de 2019. Disponible en: https://uvadoc.uva.es/bitstream/handle/10324/7154/tfg-m-n109.pdf?sequence=1&isallowed=y
Luengo E. et al. Alimentos funcionales y nutracéuticos. Sociedad española de cardiología. ISBN-13: 978-84-690-3758-4. Zaragoza, España. 2007.
Colaco P., Degáspari C. Benefits of Phaseolamine (Phaseolus vulgaris L). Review study. Vista académica. 2014; 15(1). EISSN: 1518-8361. ISSN: 1518-5192.
Nanok, K. y Sansenya, S. α-Glucosidase, α-amylase and tyrosinase inhibitory potential of capsaicin and dihydrocapsaicin. J. Food Biochem. 2020, 44, e13099 [CrossRef]
Gonzales N. Phaseolus vulgaris [internet] Revisado: 30 de octubre de 2019. Disponible en: https://www.botica.com.py/prospecto-digital/2016/11/22/phaseolus-vulgaris/.
Mejías M. Diferencias entre Faseolamina y faseolina [internet] Revisado: 12 de enero de 2018. Disponible: https://books.google.com.ec/s?id=0r7ojuktqw8c&pg=pa42&lpg=pa42&dq=diferencia+entre+faseolamina+y+faseolina&source=bl&ots=cotn0womj1&sig=acfu3u0kukktu9gee_6z6sftrejpbf_90qs419&sa=x&ved=2ahukewjfv6zb9ozrahwbdd8khaphd1qq6aewbnoecawqaq#v=onepage&q&f.
Rodríguez M. Extracción y purificación del inhibidor de alfa-amilasa de diferentes variedades mejoradas de frijol (Phaseolus vulgaris) y su efecto in vivo [Internet] Revisado: 19 de noviembre de 2017. Disponible en: http://ri-ng.uaq.mx/handle/123456789/466.
Pereira L, Pereira C, Santos C. et al. Inhibidores de la Alfa-Amilasa para el tratamiento de la diabetes y la obesidad [internet] Revisado: 28 de enero de 2017. Disponible en: http://www.bago.com.ar/vademecum/bibliografia/inhibidores-de-la-alfa-amilasa-para-el-tratamiento-de-la-diabetes-y-la-obesidad/.
Lamby C, Gómez O, Jaramillo L. La α-amilasa salival: relación con la caries dental y la salud en general. Univ Odontol. 2013; 32(69): 93-101.
Marshall J, Lauda C. Purification and properties of Phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. The Journal of Biological Chemistry. 1975; 250(20): 8030-8037.
Layer P. Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans [internet] Revisado: 30 de mayo de 1985. Disponible en: https://www.gastrojournal.org/article/0016-5085(85)90016-2/pdf.
Tormo M. Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats [internet] Revisado: 20 de julio de 2014. Disponible en: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/hypoglycaemic-and-anorexigenic-activities-of-an-amylase-inhibitor-from-white-kidney-beans-phaseolus-vulgaris-in-wistar-rats/092d57699446891465431f9dab161e08.
Skop M. Purified amylase inhibitor and novel process for obtaining the same [internet] Revisado: 06 de julio de 2006. Disponible en: http://www.freepatentsonline.com/y2006/0147565.html.
ASHU RANI, SATISH K SHARMA y AMARJIT NATH. A sensitive agar plate assay for screening inhibitors of α-amylase. The Bioscan. 2019. 14(2): 155-157.
Yifeng Rang, Wei Zhao. Preparation of α-Amylase Inhibitor from Seeds of White Kidney Bean Using a Novel and Scalable Process Based on Enzymatic Hydrolysis. International Journal of Nutrition and Food Sciences. Special Issue: Natural Active Ingredients for the Management of Diabetes and Obesity. Vol. 8, No. 3, 2019, pp. 52-58. doi: 10.11648/j.ijnfs.20190803.12
Jiang B. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor [internet] Revisado: 1 de julio de 2008. Disponible en: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/nutraceutical-role-of-the-phaseolus-vulgaris-amylase inhibitor/8616ae1ac19b63572bf31bc95295ff78/core-reader.
Moura, N. An In Vitro and In Vivo Study of the α-Amylase Activity of Phaseolamin [internet] Revisado: 1 de agosto de 2014. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/pmc4126268/#b7.
Ortega K. Identificación de proteínas involucradas en estrés biótico y abiótico en variedades comerciales del fréjol común (phaseolus vulgaris) de Ecuador [internet] Revisado: 27 de julio de 2016. Disponible en: http://repositorio.ug.edu.ec/bitstream/redug/26688/1/t-ug-pos-mbm-0081%20ortega%20maldonado.pdf.
Payan F. Structural basis for the inhibition of mammalian and insect alpha- amylases by plant protein inhibitors. Biochim Biophys Acta. 2004; 12: 171-180.
Yoon S, Robyt J. Study of the inhibition of four alpha amylases by acarbose and its 4IV-α-maltohexaosyl and 4IV-α-maltododecaosyl analogues. Carbohydr. Res. 2003; 338: 1969-1980.
Ferey G, Perrier J, Forest E, Marchis G, Puigserver A, Santimone M. The human pancreatic α-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. BBA. 1998; 1388: 10-20.
Ali H, Houghton P, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 2006; 449-455.
Gad M, El-Sawalhi M, Ismail M, El-Tanbouly N. Biochemical study of the anti-diabetic action of the Egyptian plants Fenugreek and Balanites. Mol Cell Biochem. 2006; 173-183.
Oneda H, Lee S, Inouye K. Inhibitory effect of 0,19 α-amylase from wheat kernel on the activity of porcine pancreas α-amylase and its thermal stability. J. Biochem. 2004; 135: 421-427.
Conforti F, Loizzo M, Statti G, Menichini F. Comparative radical scavenging and antidiabetic activities of methanolic extract and fractions from Achillea ligustica. All Biol Pharm Bull. 2005; 28:1791-1794.
Iulek J, Franco O, Silva M, Slivinski C, Bloch Jr, Rigden D, Grossi de Sa M. Purification, biochemical characterisation and partial primary structure of a new a-amylase inhibitor from Secale cereale (Rye). Inter. J. Biochem. Cell Physiol. 2000; 32: 1195-1204.
Kandra L, Zajácz Á, Remenyik J, Gyémánt G. Kinetic investigation of a new inhibitor for human salivary α-amylase. BBRC. 2005; 334: 824-828.
McDougall G, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. Different Polyphenolic Components of Soft Fruits Inhibit α-Amylase and α- Glicosidase. J. Agric. Food. Chem. 2005; 53: 2760-2766.
Kim Y, Jeong Y, Wang M, Lee W, Rhee H. Inhibitory effect of pine extract on α-glicosidase activity and postprandial hyperglycemia. Nutrition. 2005; 21: 756-761.
Sasaki K, Ito S, Nakamura Y, Yoshizaki F. Effect of Saiko-ka-rykotsu- borei-to on Amylase Actvity in Mice. Biol. Pharm. Bull. 2004; 27: 1688-1690.
Pusztai A, Bardocz G, Alonso R, Chrispeels M, Schroeder H, Tabe L, Higgins T. Expression of the insecticidal bean alpha-amylase inhibitor transgene has minimal detrimental effect on the nutritional value of peas fed to rats at 30% of the diet. J. Nutrit. 1999; 129: 1597-1603.
Arambewela L, Arawwawala L, Ratnasooriya W. Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J Ethnopharmacol. 2005; 14: 239-245.
Funke I, Melzig M. Traditionally used plants in diabetes therapy – phytotherapeutics as inhibitors of α-amylase activity. Rev. Bras. Farmacogn. 2006;16: 1- 5.
Grover J, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J. Ethnopharmacol. 2002; 81: 81–100.
Marles R, Farnsworth N. Plants as sources of antidiabetic agents. In: Wagner, H., Farnsworth, N.R., (Eds.), Economic and Medicinal Plant Research. Academic Press Ltd., UK. 1994; 6: 149–187.
Moura de Gouveia N, Espindola F. Produção de uma fração concentrada em alfa-amilase salivar humana (HSA) como alvo para descoberta de novos inibidores e fracionamento do extrato hidroalcóolico da casca de Pouteria sp. Pós-graduação em genética e bioquímica. Universidade Federal de Uberlândia. 2008. Brazil.
Franco O, Rigden D, Melo F, Grossi de Sá M. Plant α-amylase inhibitors and their interaction with insect α-amylases. Structure, function and potential for crop protection, Eur. J. Biochem. 2002; 269: 397– 412.
Lu S, Deng P, Liu X, Luo J, Han R, Gu X, Liang S, Wang X, Li F, Lozanov V, Patthy A, Pongor, S. Solution structure of the major a- amylase inhibitor of the crop plant amaranth, J. Biol.Chem. 1999; 274: 20473– 20478.
He Li, Haochun Zhou, Jian Zhang, Xiaohang Fu, Zhiwei Ying & Xinqi Liu (2021) Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms, International Journal of Food Properties, 24:1, 277-290, DOI: 10.1080/10942912.2021.1876087
Murao S, Goto A, Matsui Y, Ohyama K. New proteinous inhibitor (Haim) of animal a-amylase from Streptomyces griseosporeus YM-25, Agric. Biol. Chem. 1980; 44: 1679– 1681.
Richardson M. Seed storage proteins: the enzyme inhibitors. In: Methods in Plant Biochemistry. Academic Press, London, UK. 1990; 5: 261-307.
Fontanini D, Capocchi A, Saviozzi F, Galleschi L. Simplified electrophoretic assay for human salivary α-amylase inhibitor detection in cereal seed flours. J. Agric. Food Chem. 2007; 55: 4334-4339.
Santimone M, Koukiekolo R, Moreau Y, Berre V, Rougé P, Marchis G, Desseaux V. Porcine pancreatic α-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (α-AI1) and structural changes in the α- amylase inhibitor complex. BBA. 2004;1696: 181-190.
Valencia A, Bustillo A, Ossa G, Chrispeels M. α-amylase of the coffee berer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect. Biochem. Mol. Biol. 2000; 30: 207-213.
Feng G, Richardson M, Chen M, Karmer, K, Morgan T, Reeck G. α-amilase inhibitors from wheat: a sequences and patterns of inhibition of insect and human α-amilases. Insect Biochem. Mol. Biol. 1996; 26: 419-426.
Abe J, Sidenius U, Svensson B. Arginine is essential for the α-amilase inhibitory activity of the α-amilase inhibitory activity of the α-amilase/subtilisin inhibitor (BSAI) from barley seeds. Biochem. J. 1993; 293: 151-155.
Obiro, W.C.; Zhang, T.; Jiang, B. The nutraceutical role of the Phaseolus vulgaris α-amylase inhibitor. British Journal of Nutrition 2008, 100, 1–12.
Shah SB, Sartaj L, Ali F, et al. Plant extracts are the potential inhibitors of α-amylase: a review. MOJ Bioequiv Availab. 2018;5(5):270‒273. DOI: 10.15406/mojbb.2018.05.00113
Jay Udani, Ollie Tan and Jhanna Molina. Systematic review and meta-analysis of a proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris L.) on weight and fat loss in humans. Foods 2018, 7, 63; doi:10.3390/foods7040063
Bhawna Tyagi, Divya Singh, D.P. Mishra & Ashutosh Dubey (2018) α-Amylase Inhibitors from Some Cassia Species and Their Interaction with α-Amylase Potential for Crop Protection, Journal of Biologically Active Products from Nature, 8:1, 64-69, DOI:10.1080/22311866.2018.1445029
Fatemeh Ghorbani, Masoud Sadeghi, Abbas Aghaie, Arezou Ghahghaei, Cyrus Jalili, Reza Khodarahmi, Study of α-Amylase Inhibitors among Different Bean Cultivars and Evaluation of their Effectiveness Compared with a Commercial Product using In Vitro/In Vivo Experimental Systems, J Res Med Dent Sci, 2018, 6 (1): 381-391, DOI: 10.5455/jrmds.20186162
Guangqiu Qin, FangWang, HuiliLiang, SongTang, KamranShekh, YanwuWang, Bin Li, Baiqing Dong and Pingjing Wen. Subchronic study of a white kidney bean (Phaseolus vulgaris) extract with α-Amylase inhibitory activity. Hindawi BioMed Research International. Volume 2019, Article ID 9272345, 9 pages https://doi.org/10.1155/2019/9272345
De Andrade, Felipe Aranha; Dipayan Sarkar; Édison Miglioranza; Leandro Simões Azeredo Gonçalves; Lucia Helena da Silva Miglioranza; and Kalidas Shetty. 2019. Screening of Snap Bean (Phaseolus vulgaris L.) Genotypes for Phenolic Bioactive-Linked Anti-Hyperglycemic Properties Using In Vitro Models. Journal of Medicinally Active Plants 8, (3):20-32. DOI: https://doi.org/10.7275/71qw-g724 https://scholarworks.umass.edu/jmap/vol8/iss3/2
Micheli Laura, Lucarini Elena, Trallori Elena , Avagliano Carmen, De Caro Carmen, Russo Roberto, Calignano Antonio, Ghelardini Carla, Pacini Alessandra and Di Cesare Lorenzo. Phaseolus vulgaris L. extract: Alpha-amylase inhibition against metabolic syndrome in mice. Nutrients 2019, 11, 1778; doi:10.3390/nu11081778
Wai Chuen Choi, Tim Parr, Yin Sze Lim. The impact of four processing methods on trypsin-, chymotrypsinand alpha-amylase inhibitors present in underutilised legumes. J Food Sci Technol (January 2019) 56(1):281–289. https://doi.org/10.1007/s13197-018-3488-0
Castillo, F; González, D., and Moore-Carrasco, R.. Effects of Phaseolus vulgaris extract on lipolytic activity and differentiation of 3T3-L1 preadipocytes into mature adipocytes: A strategy to prevent obesity. Hindawi, Journal of Nutrition and Metabolism. Volume 2019, Article ID 5093654, 8 pages. https://doi.org/10.1155/2019/5093654
Shiqi Luo, George Binh Lenon, Harsharn Gill, Andrew Hung, Daniel A. Dias, Mingdi Li, and Linh Toan Nguyen. Inhibition of pancreatic α-amylase activity by a weight-loss herbal formula RCM-107. Preprints (www.preprints.org). 2019. DOI:10.20944/preprints201907.0284.v1
Ziaul Hasan Rana, Mohammad Khairul Alam and Mohammad Akhtaruzzaman. Nutritional composition, total phenolic content, antioxidant and α amylase inhibitory activities of diferent fractions of selected wild edible plants. Antioxidants. 2019: 8, 203; Doi:10.3390/antiox8070203
Uci Para Ramadhani, Boy Chandra and Harrizul Rivai. Overview of phytochemistry and pharmacology of chickpeas (Phaseolus vulgaris). World journal of pharmacy and pharmaceutical sciences. ISSN 2278 – 4357. 2020: 9, 9, 442-461
Like Y. Hasek, Robert J. Phillips, Anna M. R. Hayes, Kimberly Kinzig, Genyi Zhang, Terry L. Powley & Bruce R. Hamaker (2020): Carbohydrates designed with different digestion rates modulate gastric emptying response in rats, International Journal of Food Sciences and Nutrition, DOI: 10.1080/09637486.2020.1738355
Kim Do Hoon, Park Yu Hwa, Lee Jung Suk, Jeong Hyun Il, Lee Kye Wan and Kang Tong Ho. Anti-Obesity Efect of DKB-117 through the inhibition of pancreatic lipase and amylase activity. Nutrients 2020, 12, 3053; doi:10.3390/nu12103053
Luzardo-Ocampo, I.; Campos-Vega, R.; Gonzalez de Mejia, E.; Loarca-Piña, G. Consumption of a baked corn and bean snack reduced chronic colitis inflammation in CD-1 mice via downregulation of IL-1 receptor, TLR, and TNF-α associated pathways. Food Res. Int. 2020, 132, 109097, doi:10.1016/j.foodres.2020.109097.
Hussein, S; Khalaf, A; Ahmed, Y; Ahmed, B. and Iyad, A. Determination of inhibition activity of α-amylase enzyme, antioxidant activity, antibacterial activity and phenolic compounds by using some medical plants. Iraqi Journal of Agricultural Sciences. 2020:51(1):411-421
Khadayat, K., Marasini, B., Gautam,H., Ghaju, S. and Parajuli, N. Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus. Clinical Phytoscience (2020) 6:34. https://doi.org/10.1186/s40816-020-00179-8
Sultana, R., Alashi, A., Islam, K., Saifullah, M., Haque, C., and Aluko, R. Inhibitory activities of polyphenolic extracts of Bangladeshi vegetables against α-amylase, α-glucosidase, pancreatic Lipase, renin, and angiotensin-converting enzyme. Foods 2020, 9, 844; DOI: 10.3390/foods9070844
Wang S, Chen L, Yang H, Gu J, Wang J, Ren F. Regular intake of white kidney beans extract (Phaseolus vulgaris L.) induces weight loss compared to placebo in obese human subjects. Food Sci Nutr. 2020;8:1315–1324. https ://doi.org/10.1002/fsn3.1299
Serna-Perez, A.B.; Loarca-Piña, G.; Luzardo-Ocampo, I. Characterization of Dietary Fiber Extracts from corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated to Glucose and Lipids Metabolism In Vitro. Biol. Life Sci. Forum 2021, 1, x. https://doi.org/10.3390/xxxxx
Marikkar, J., Nuurhaffiszzulullah, A. and Gunarathne, K. Evaluation of bran extracts of rice (Oryza sativa) and selected bean (Phaseolus vulgaris L.) varieties for their antioxidative and anti-hyperglycemic potentials. Journal of Dry Zone Agriculture, 2021, 7(1):36-49
Abdulrahman, B., Bala, M. and Oluwasesan, B. Evaluation of in vitro antioxidant and antidiabetic potential of extracts from Phaseolus vulgaris L. seeds (Black turtle beans). Functional Food Science 2021; 1(9): 23-39
Singh, R., Dobriyal, A., Singh, R., y De los Rios, P. Evaluation of inhibitory activity, purification and X-Ray crystallography of alpha-amylase inhibitor from Phaseolus vulgaris cultivars of Uttarakhand. Research Square. (2021). DOI: https://doi.org/10.21203/rs.3.rs-154559/v1
Shi, Z.; Zhang, X.; Zhu, Y.; Yao, Y.; Ren, G. Natural Extracts from White Common Bean (Phaseolus vulgaris L.) Inhibit 3T3-L1 Adipocytes Differentiation. Appl. Sci. 2021, 11, 167. https://dx.doi.org/10.3390/app11010167
Sparvoli, F.; Giofré, S.; Cominelli, E.; Avite, E.; Giuberti, G.; Luongo, D.; Gatti, E.; Cianciabella, M.; Daniele, G.M.; Rossi, M.; et al. Sensory characteristics and nutritional quality of food products made with a biofortified and lectin free common bean (Phaseolus vulgaris L.) flour. Nutrients 2021, 13, 4517. https://doi.org/10.3390/nu13124517
Ezzat, S. M., Abdel Rahman, M. F., Salama, M. M., Mahrous, E. A., & El Bariary, A. Non-polar metabolites of green beans (Phaseolus vulgaris L.) potentiate the antidiabetic activity of mesenchymal stem cells in streptozotocin-induced diabetes in rats. Journal of Food Biochemistry, 2022: e14083. https://doi.org/10.1111/jfbc.14083
Rosado L. et al. Análisis de los medicamentos a base de hierbas comercializados en una farmacia magistral del serto de Paraiba. Research, Society and Development. 2020; (9):7. ISSN 2525-3409. DOI: http://dx.doi.org/10.33448/rsd-v9i7.4700
Murra M. et al. Presença de inibidores de proteases em amostras comerciais de “faseolaminas” utilizadas como bloqueadores de carboidratos e os riscos à saúde. Revista do Instituto Adolfo Lutz, São Paulo. 2013; 72:3.
De Gouveia N. Evaluación del control glicémico sanguíneo y del estrés oxidativo en páncreas de animales diabéticos inducidos y no diabéticos tratados con extracto de Vochysia rufa y faseolamina. Tesis de doctorado en genética y bioquímica. Universidad Federal de Uberlandia. 2012. Brasil.
Silva L, Donizete C. Estudio comparativo entre faseolamina comercial y harina de fréjol como perspectiva al tratamiento de obesidad y diabetes mellitus tipo 2. Tesis de maestría en agroquímica. Universidad Federal de Lavras. 2008. Minas Gerais, Brasil.
Martínez M, Girbés T. Antinutrientes proteicos de las leguminosas: tipos, toxicidad y efectos fisiológicos. Tesis de grado para nutricionista dietista. Universidad de Valladolid. 2016. España.
Anvisa. Resolución No. 1992 del 3 de mayo de 2010: Disposición sobre publicidad de productos sin registro. Diario oficial de União. 2010. Brasil.
Yamamoto T. Enzyme Chemistry and Molecular Biology of Amylases and Related Enzymes. CRC Press Inc. ISBN 9780849329043. 1995.
Janecek S, Ohnishi M, Hayashi T, Ishima S, Kuriki T. Structural features and evolutionary relationships in the α- amylase family. Glycoenzymes. The Japanese Scientific Societies Press. 2000.
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991; 280: 309–316.
Le Berre-Anton V, Bompard-Gilles C, Payan F, Rougé P. Characterization and functional properties of the alpha-amylase inhibitor from kidney bean (Phaseolus vulgaris) seeds. BBA. 1997; 1343: 31.
Poderes J. Purification and some physical and chemical properties of red kidney bean (phaseolus vulgaris) α‐amylase inhibitor [internet] Revisado: 12 de julio de 1998. Disponible en: http://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-4514.1978.tb00183.x.
Gamero M. Toxicidad in vivo y proteómica comparativa para el estudio de la expresión de proteínas con actividad insecticida presentes en semillas de phaseolus vulgaris l. [Internet] Revisado: 18 de enero 2021. Disponible en: http://saber.ucv.ve/bitstream/123456789/7897/1/tesis%20mois%c3%a9s%20daniel%20 gamero.pdf.
Knabben, C. y Costa, José. Manual de classificação do feijão: Instrução Normativa nº 12, de 28 de março de 2008. Brasília, DF: Embrapa, 2012. Disponível em:< http://www.felgran. com.br/ images/Classifica% C3%A7 ao _Feijao_Embrapa.pdf>.
Brayer, G.D., Luo, Y., Withers, S.G., 1995. The structure of human pancreatic alpha-amylase at 1.8 Angstrom resolution and comparisons with related enzymes. Protein Sci. 4, 1730–1742.
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.