EVALUACIÓN DE LA CALIDAD DE AGUA EN LA RED N° 2 DE LA CIUDAD DE RIOBAMBA POR COMPORTAMIENTO HIDRÁULICO Y CARACTERIZACIÓN FÍSICO-QUÍMICA

Mabel Mariela Parada R.1, Gerardo León Ch.2
1,2Escuela Superior Politécnica de Chimborazo
mabelparada1982@hotmail.com

RESUMEN
La presente investigación fue desarrollada con el propósito de implementar tecnologías ambientales innovadoras y económicamente justificables que aún no se han visto reflejados en nuestra sociedad, utilizando modelos de simulación que son herramientas ampliamente utilizadas a nivel mundial para evaluar diferentes estrategias de gestión que predigan el comportamiento hidráulico y la calidad del agua en un sistema de distribución.

Para la investigación primordialmente se localizó el sitio de estudio, tomando como plan piloto una zona de la Red Nº 2 de distribución de agua potable de la ciudad de Riobamba. Luego se efectuó una caracterización físico-química y microbiológica en algunos puntos de dicha red, para comprobar la calidad del agua que se distribuye. Posteriormente se levantaron datos en campo, que sirvieron para la modelación mediante el software EPANET.

Para los análisis de laboratorio se tomaron en cuenta 9 parámetros: color, turbiedad, pH, conductividad, alcalinidad, dureza y cloro residual, este último medida in situ, además de coliformes fecales y totales, determinando que los parámetros analizados están dentro de la norma con la excepción del parámetro dureza". Los datos recolectados en campo como ubicación geográfica, presión y caudal, sirven para calibrar el modelo y realizar la simulación del comportamiento hidráulico y de calidad del agua, tomando como indicador el cloro residual. El resultado de la validación del modelo tiene un 3 % de error, valor aceptable. El implementar esta herramienta es una alternativa para mejorar el sistema de distribución de agua en las redes de la ciudad.

Términos clave: Calidad del agua, Red de distribución de agua potable, modelos de simulación, EPANET

SUMMARY
This research was developed with the purpose of implementing innovative e

INTRODUCCIÓN
Uno de los usos más importantes del agua es el de consumo humano, de tal forma que el abastecimiento de agua potable es un servicio básico indispensable para las más elementales condiciones de habitabilidad, higiene y confort humano. El suministro adecuado de agua potable se obtiene cuando el servicio funciona permanentemente y dentro de normas mínimas aceptables de cantidad y calidad.

La necesidad de mejorar la calidad del agua suministrada y de optimizar las operaciones implicadas en ello, ha ido incorporando el uso de nuevas técnicas como la Informática y la automática en la gestión y control de los sistemas hidráulicos; debido a esto, el uso de modelos matemáticos se ha generalizado, teniendo una gran aceptación en España, y en países de habla hispana como Cuba, Colombia, México, Brasil, y otros que a más de incorporar estos modelos a todo su sistema, también lo utilizan en estudios y desarrollo de proyectos de mejora, diseño o revisión de las instalaciones.

Con todos estos antecedentes, el "Laboratorio de Investigación Nacional para la Gestión de Riesgos (National Risk Mana-
glement Research Laboratory) que es un centro de la Agencia para la Protección del Medio Ambiente de EE.UU (EPA) dedicado a la investigación de procedimientos técnicos y de gestión, orientados a reducir los riesgos que amenazan a la salud humana y al ambiente, ha desarrollado un modelo de simulación por computador llamado EPANET que predecir el comportamiento hidráulico y la calidad del agua en un sistema de distribución durante periodos de operación prolongados.

El Ecuador, especialmente la ciudad de Riobamba, dispone de fuentes de abastecimiento suficientes y adecuadas; pero el sistema de redes, la conducción y potabilización provocan un grave inconveniente: que no se cuenta con agua las 24 horas del día. La distribución es en tres horarios, existiendo una desproporción entre la cantidad de agua que se requiere y la que actualmente se recibe en los hogares.

En este sentido, y evidenciando los problemas de abastecimiento, se vio la necesidad de realizar un estudio de investigación para la evaluación de la calidad del agua potable utilizando el modelo de simulación EPANET 2.0. Con lo cual se puede predecir futuros problemas, tomar acciones preventivas, y considerar estos estudios como herramientas de gestión ambiental, permitiendo ahorrar de recursos y decisiones más acertadas y concisas.

La investigación limitó la evaluación a un solo sector de la red de distribución de agua potable Nº 2 de la ciudad de Riobamba, debido a que la recolección de datos es extensa y con financiamiento limitado. El estudio se realizó a nivel de campo y de laboratorio, basándose en el análisis del comportamiento hidráulico desde el tanque de distribución hasta llegar a las viviendas del sector en estudio. La calidad del agua se evaluó a través de características físico-químicas. Concluida la investigación, se comprobó el correcto funcionamiento del modelo de simulación de EPANET, el cual servirá como Plan Piloto para la EMAQAR.

METODOLOGÍA

La investigación se desarrolló en las siguientes etapas:

1. Recopilación de información y aplicación de encuesta: La información recogida fue analizada y seleccionada para establecer las condiciones actuales de la red en estudio (Figura 1), para lo cual se delimitó una zona de la Red Nº 2 con el fin de facilitar la recolección de datos. Se aplicó además una encuesta a usuarios de la Red Nº 2, para caracterizar, describir y obtener conclusiones sobre una muestra de datos acerca de la opinión del público. Los datos recolectados durante 15 días, se resumen en tablas estadísticas.

2. Caracterización físico-química y microbiológica del agua: El sector de estudio de la Red Nº 2 se dividió en cuatro bloques A, B, C y D (Figura 2). Se realizaron muestras de 71 puntos, en horarios de 5h30-8h30, 12h00-14h30 y de 18h00-21h00 por cada punto, dando un total de 213 muestras a ser analizadas. Se analizaron 54 muestras diarias por cada bloque de trabajo (Tabla 1), tomando en cuenta 9 parámetros de la norma INEN 1108 (Tabla 2): pH, turbiedad, color, dureza, conductividad, alcalinidad, cloro residual (medido in situ), así como coliformes totales y fecales, que servirán como control para la calidad del agua, los análisis se realizaron en el laboratorio del Centro de Servicios Técnicos y Transferencia Tecnológica Ambiental CESTTA, ubicado en la Facultad de Ciencias de la ESPOCH.

Figura 1. Plano de la Red Nº 2 de Agua Potable de la ciudad de Riobamba

Tabla 1. Plan de muestreo inicial

<table>
<thead>
<tr>
<th>LUGAR DE MUESTREO</th>
<th>N° DE MUESTRAS A ANALIZAR</th>
<th>REPLICACION DEL MUESTREO</th>
<th>PUNTOS DE MUESTREO</th>
<th>TOTAL DE MUESTRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer bloque</td>
<td>18</td>
<td>2</td>
<td>54</td>
<td>213</td>
</tr>
<tr>
<td>Segundo bloque</td>
<td>18</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Tercer bloque</td>
<td>18</td>
<td>2</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Cuarto bloque</td>
<td>18</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Total (7)</td>
<td>71</td>
<td>213</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ing. Mabel Parada
3. Levantamiento de datos para la modelación: Se tomaron datos en campo, como ubicación geográfica, medición de caudal y presión para verificar las condiciones de operación de la tubería (Tabla 3), además de la medición de cloro residual. Estos datos sirvieron para la calibración del modelo Epanet 2.0.

4. Calibración del modelo: Recolectados todos los datos se procedió a introducirlos en el software (figura 2). Luego se calibraron los datos reales y los que dados por el modelo EPANET 2.0, con respecto al caudal, presión y cloro residual (figura 3).
RESULTADOS Y DISCUSIÓN

La encuesta aplicada se realizó para investigar la satisfacción de los usuarios, con el servicio de agua potable en cuanto a las características y cantidad, además de recabar información de los problemas a los que se enfrentan diariamente con el servicio. Los resultados generales obtenidos de la encuesta son: en cuanto a calidad del agua, a criterio de los usuarios un 78,3% no cumple con los parámetros establecidos, el 50,1% no está satisfecho con la cantidad de agua que recibe, el 77,93% califica el servicio como deficiente, resultados que están calificando negativamente al sistema.

De las características físico-químicas y microbiológicas que se realizaron en los puntos de muestreo, se tomaro en cuenta 9 parámetros de la norma INEN 1108, los cuales fueron: pH con un valor de 7.17; color 2.83; turbiedad 0.67 NTU; conductividad 357,30 µS/cm; cloruro residual 0.8 mg/L; alcalinidad 360 mg/L; califormes fecales y totales 0 colonias/100 ml. Todos estos parámetros están dentro de la norma, exceptuando el parámetro de dureza, que tiene un valor promedio de 340.71 mg/L cuando el límite máximo permisible es de 300 mg/L. A pesar de que sucede con la alcalinidad, que tiene un valor de 300.31 mg/L, cuando la norma indica 300 mg/L, es por esto que se producen daños en las tuberías, ya que el agua con alta dureza y alcalinidad es corrosiva. Sin embargo el agua distribuida en la red se encuentra en condiciones aptas para el consumo humano (Tabla 4).

Con el levantamiento de datos en campo se realizaron mediciones de presión en cada punto de la red, y se obtuvo una presión promedio de 19.27 PSI, cuando la óptima está entre 25-30 PSI. Esto quiere decir que la presión a la que está funcionando la red no es la adecuada. Posiblemente por este motivo es que en casi toda la ciudad en edificaciones mayores a dos pisos, la distribución del agua es por medio de bombas. En cuanto al caudal, se obtuvo un promedio de 0.19 L/s pero el valor de la norma está en 25 L/s. El problema del caudal radica en que no existe una distribución continua de agua en la red.

Del balance de masa se observa que del 100% de agua que entra en la red sólo el 56.7% llega a los usuarios, el 9.7% queda en las tuberías, y el 33.6% se desperdicia por fugas. Por tanto la eficiencia de la red es 66.4% que es aceptable, pero se requiere localizar las fugas existentes y dar una pronta intervención.

En el análisis de caudal y cloro se aplicaron un análisis estadísticos (Tuckey y Anova) que demostraron que sí existe diferencia entre las zonas de estudio, puesto que al realizar comparaciones entre la ZONA A, y B están en el mismo grupo y la ZONA C y D son muy diferentes de las demás.

- De acuerdo a la simulación de la red, deducimos que la menor cantidad de cloro residual se encuentra en la zona C y D y la mayor cantidad en la zona A y B es así que el cloro está presente en todos los puntos de la red, pero mientras va bajando por las diferentes zonas este se va degradando, lo mismo sucede con respecto al caudal los datos de la zona C y D están por debajo del límite óptimo, en cambio la zona A y B están dentro del límite, aun así podemos decir que el caudal que llega a los hogares es adecuado para satisfacer las necesidades del consumidor, en cambio con la presión vemos que esta disminuye en la zona A y B pero se recupera en la zona C y D, mientras descenden por la red esto se debe a la diferencia de altura, pero ninguna de las zonas cumplen con el mínimo de presión requerida (Ver Figura 5, 6 y 7).

Aplicando el modelo de EPANET 2.0, se comprobó que la simulación realizada por el programa está acorde a la situación actual de la red, ya que el porcentaje promedio de error luego de la calibración fueron 2.64%, 2.56% y 1.83%, para caudal, presión y cloro, respectivamente. Es decir está por debajo del máximo acceptable de 5% para un proceso de validación.

Por todo esto el uso adecuado del presente modelo es una herramienta que beneficiaría el manejo de la red Nº 2, constituyendo un soporte para la toma de decisiones de carácter técnico.

El sistema de agua potable de la ciudad de Riobamba viene dando servicio desde hace 40 años, tiempo que supera la vida útil de tuberías y accesorios que forman parte la red. Esto hace que existan diversos problemas como: contaminación, baja de presión, fugas, rupturas de tuberías, distribución no continua, deficiencia en la cloración.
BIBLIOGRAFÍA

Revisión técnica por: Gina Álvarez